1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
\name{watson.wheeler.test}
\title{Watson-Williams Test of Homogeneity of Means}
\alias{watson.wheeler.test}
\alias{watson.wheeler.test.default}
\alias{watson.wheeler.test.list}
\alias{watson.wheeler.test.formula}
\description{
Performs the Watson-Wheeler test for homogeneity on two or more samples of circular data.
}
\usage{
watson.wheeler.test(x, ...)
\method{watson.wheeler.test}{default}(x, group, ...)
\method{watson.wheeler.test}{list}(x, ...)
\method{watson.wheeler.test}{formula}(formula, data, ...)
}
\arguments{
\item{x}{a vector of angles (coerced to class \code{\link{circular}}) or a list of such angles.}
\item{group}{a vector or factor object giving the groups for the corresponding elements of \code{x}. Ignored if \code{x} is a list}
\item{formula}{a formula of the form \code{lhs ~ rhs} where \code{lhs} is a vector of angles and \code{rhs} a vector or factor giving the corresponding groups.}
\item{data}{an optional data.frame containing the variables in the formula \code{\link{formula}}.}
\item{\dots}{further arguments passed to or from other methods.}
}
\value{
A list with class \code{"htest"} containing the following components:
\item{statistic}{W, the statistic of the test, which is approximately distributed as a chi-squared.}
\item{parameter}{the degrees of freedom for the chi-squared approximation of the statistic.}
\item{p.value}{the p-value for the test.}
\item{method}{a character string containing the name of the test.}
\item{data.name}{a character string giving the name(s) of the data.}
}
\details{
The Watson-Wheeler (or Mardia-Watson-Wheeler, or uniform score) test is a non-parametric test to compare two or several samples. The difference between the samples can be in either the mean or the variance.
The \emph{p}-value is estimated by assuming that the test statistic follows a chi-squared distribution. For this approximation to be valid, all groups must have at least 10 elements.
In the default method, \code{x} is a vector of angles and \code{group} must be a vector or factor object of the same length as \code{x} giving the group for the corresponding elements of \code{x}.
If \code{x} is a list, its elements are taken as the samples to be compared.
In the \code{\link{formula}} method, the angles and grouping elements are identified as the left and right hand side of the formula respectively.
All angles should be of class \code{\link{circular}} and will be coerced as such if they are not.
}
\author{Jean-Olivier Irisson}
\references{
Batschelet, E (1981). Circular Statistics in Biology. chap 6.3, p. 104
Zar, J H (1999). Biostatistical analysis. section 27.5, p. 640
}
\examples{
# Example used in Zar (1999)
x1 <- circular(c(35, 45, 50, 55, 60, 70, 85, 95, 105, 120),
units="degrees", template="geographics")
x2 <- circular(c(75, 80, 90, 100, 110, 130, 135, 140, 150, 160, 165),
units="degrees", template="geographics")
watson.wheeler.test(list(x1,x2))
}
\keyword{htest}
|