1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
\name{wrappedCauchy}
\title{Wrapped Cauchy Density Function}
\alias{dwrappedcauchy}
\alias{rwrappedcauchy}
\description{
Density, and random generation for the wrapped Cauchy circular distribution.
}
\usage{
dwrappedcauchy(x, mu = circular(0), rho = exp(-1))
rwrappedcauchy(n, mu = circular(0), rho = exp(-1), control.circular=list())
}
\arguments{
\item{x}{a vector. The object is coerced to class
\code{\link{circular}}.}
\item{n}{number of observations.}
\item{mu}{mean direction of the distribution as a \code{circular} object.}
\item{rho}{concentration parameter of the distribution. \code{rho}
must be in the interval from 0 to 1.}
\item{control.circular}{the attribute of the resulting object.}
}
\value{
\code{dwrappedcauchy} gives the density and \code{rwrappedcauchy} generates random deviates.
}
\author{Claudio Agostinelli and Ulric Lund}
\references{
Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, Section 2.2.7, World Scientific Press, Singapore.
}
\examples{
data1 <- rwrappedcauchy(100, mu=circular(0), rho=0.7,
control.circular=list(units="degrees"))
plot(data1)
ff <- function(x) dwrappedcauchy(x, mu=circular(pi), rho=0.7)
curve.circular(ff, join=TRUE, xlim=c(-2, 1),
main="Density of a Wrapped Cauchy Distribution \n mu=pi, rho=0.7")
}
\keyword{distribution}
|