1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
R version 3.4.0 (2017-04-21) -- "You Stupid Darkness"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> # Test data from:
> # Circular statistics in biology, Batschelet, E (1981)
> # ยง6.2, p99
> #
>
> suppressMessages(library("circular"))
> # ?watson.williams.test
>
> angles <- circular( c(rep(c(-20, -10, 0), c(1,7,2)), rep(c(-10, 0, 10, 20), c(3,3,3,1))), units="degrees", template="geographics")
> group <- factor(rep(c("exp", "control"), each=10))
>
> # expect this:
> # F = 8.7329, df1 = 1, df2 = 18, p-value = 0.003108
> # mean of control mean of exp
> # 1.988969 -9.000615
>
> # Test interfaces
> xn <- angles
> watson.williams.test(xn, group)
Watson-Williams test for homogeneity of means
data: xn by group
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
>
> xl <- split(xn, group)
> watson.williams.test(xl)
Watson-Williams test for homogeneity of means
data: control and exp
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
>
> xl <- split(xn, group)
> names(xl) <- NULL
> watson.williams.test(xl)
Watson-Williams test for homogeneity of means
data: 1 and 2
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of 1 mean of 2
1.988969 -9.000615
>
> xd <- data.frame(group=group, angles=angles)
> watson.williams.test(angles ~ group, xd)
Watson-Williams test for homogeneity of means
data: angles by group
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
>
> # Test the influence of ordering the groups
> id <- c(9, 8, 7, 4, 6, 5, 12, 18, 10, 17, 1, 19, 3, 20, 2, 16, 15, 14, 13, 11)
> angles <- angles[id]
> group <- group[id]
>
> xn <- angles
> watson.williams.test(xn, group)
Watson-Williams test for homogeneity of means
data: xn by group
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
> xl <- split(xn, group)
> watson.williams.test(xl)
Watson-Williams test for homogeneity of means
data: control and exp
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
> xd <- data.frame(group=group, angles=angles)
> watson.williams.test(angles ~ group, xd)
Watson-Williams test for homogeneity of means
data: angles by group
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of control mean of exp
1.988969 -9.000615
>
> # Test NAs
> angles[length(angles)+1] <- NA
> levels(group) <- c("exp", "control", "bar")
> group[length(group)+1] <- "bar"
> xn <- angles
> watson.williams.test(xn, group)
Watson-Williams test for homogeneity of means
data: xn by group
F = 8.7329, df1 = 1, df2 = 18, p-value = 0.008472
sample estimates:
Circular Data:
Type = angles
Units = degrees
Template = geographics
Modulo = asis
Zero = 1.570796
Rotation = clock
mean of exp mean of control
1.988969 -9.000615
>
|