File: batchSOM.Rd

package info (click to toggle)
r-cran-class 7.3-4-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 224 kB
  • sloc: ansic: 375; makefile: 1
file content (69 lines) | stat: -rw-r--r-- 1,945 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
% file class/man/batchSOM.Rd
% copyright (C) 2002 W. N. Venables and B. D. Ripley
%
\name{batchSOM}
\alias{batchSOM}
\title{
Self-Organizing Maps: Batch Algorithm
}
\description{
Kohonen's Self-Organizing Maps are a crude form of multidimensional scaling.
}
\usage{
batchSOM(data, grid = somgrid(), radii, init)
}
\arguments{
  \item{data}{
    a matrix or data frame of observations, scaled so that Euclidean
    distance is appropriate.
  }
  \item{grid}{
    A grid for the representatives: see \code{\link{somgrid}}.
  }
  \item{radii}{
    the radii of the neighbourhood to be used for each pass: one pass is
    run for each element of \code{radii}.
  }
  \item{init}{
    the initial representatives.  If missing, chosen (without replacement)
    randomly from \code{data}.
  }
}
\value{
  An object of class \code{"SOM"} with components
  \item{grid}{the grid, an object of class \code{"somgrid"}.}
  \item{codes}{a matrix of representatives.}
}
\details{
  The batch SOM algorithm of Kohonen(1995, section 3.14) is used.
}
\seealso{
  \code{\link{somgrid}}, \code{\link{SOM}}
}
\references{
  Kohonen, T. (1995) \emph{Self-Organizing Maps.} Springer-Verlag.

  Ripley, B. D. (1996)
  \emph{Pattern Recognition and Neural Networks.} Cambridge.

  Venables, W. N. and Ripley, B. D. (2002)
  \emph{Modern Applied Statistics with S.} Fourth edition.  Springer.
}
\examples{
require(graphics)
data(crabs, package = "MASS")

lcrabs <- log(crabs[, 4:8])
crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, rep(50,4))])
gr <- somgrid(topo = "hexagonal")
crabs.som <- batchSOM(lcrabs, gr, c(4, 4, 2, 2, 1, 1, 1, 0, 0))
plot(crabs.som)

bins <- as.numeric(knn1(crabs.som$code, lcrabs, 0:47))
plot(crabs.som$grid, type = "n")
symbols(crabs.som$grid$pts[, 1], crabs.som$grid$pts[, 2],
        circles = rep(0.4, 48), inches = FALSE, add = TRUE)
text(crabs.som$grid$pts[bins, ] + rnorm(400, 0, 0.1),
     as.character(crabs.grp))
}
\keyword{classif}