File: classInt.R

package info (click to toggle)
r-cran-classint 0.4-9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 316 kB
  • sloc: fortran: 65; sh: 13; ansic: 13; makefile: 2
file content (661 lines) | stat: -rw-r--r-- 23,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
gvf <- function(var, cols) {
   sumsq <- function(x) sum((x - mean(x))^2)
   sdam <- sumsq(var)
   sdcm <- sum(tapply(var, factor(cols), sumsq))
   res <- 1 - (sdcm/sdam)
   res
}

tai <- function(var, cols) {
   sumabs <- function(x) sum(abs(x - mean(x)))
   x <- sumabs(var)
   y <- sum(tapply(var, factor(cols), sumabs))
   res <- 1 - (y/x)
   res
}

oai <- function(var, cols, area) {
   sumabs1 <- function(x) sum(abs(x[,1] - mean(x[,1]))*x[,2])
   m <- cbind(as.numeric(var), as.numeric(area))
   x <- sumabs1(m)
   y <- sum(by(m, factor(cols), sumabs1))
   res <- 1 - (y/x)
   res
}

jenks.tests <- function(clI, area) {
   if (!inherits(clI, "classIntervals")) stop("Class interval object required")
   cols <- findCols(clI)
   res <- c("# classes"=length(clI$brks)-1,
     "Goodness of fit"=gvf(clI$var, cols),
     "Tabular accuracy"=tai(clI$var, cols))
   if (!missing(area)) {
      if (length(area) != length(cols))
         stop("area and classified variable different lengths")
      res <- c(res, "Overview accuracy"=oai(clI$var, cols, area))
   }
   res
}

plot.classIntervals <- function(x, pal, ...) {
   if (!inherits(x, "classIntervals")) stop("Class interval object required")
   if (length(pal) < 2) stop("pal must contain at least two colours")
   pal_out <- colorRampPalette(pal)(length(x$brks)-1)
   plot(ecdf(x$var), ...)
   stbrks <- cbind(x$brks[-length(x$brks)], x$brks[-1])
   abline(v=x$brks, col="grey")
   for (i in 1:nrow(stbrks))
      rect(stbrks[i,1], par("usr")[3], stbrks[i,2], 0, col=pal_out[i],
        border="transparent")
}

classIntervals2shingle <- function(x) {
	res <- x$var
	nl <- length(x$brks) - 1
	lres <- vector(mode="list", length=nl)
	for (i in 1:nl) lres[[i]] <- x$brks[c(i, i+1)]
	class(lres) <- "shingleLevel"
	attr(res, "levels") <- lres
	class(res) <- "shingle"
	res
}


# change contributed by Richard Dunlap 090512
# Added intervalClosure argument to allow specification of whether
# partition intervals are closed on the left or the right
# Added dataPrecision argument to allow rounding of interval boundaries
# to the precision -- the argument equals the number of
# decimal places in the data.  Negative numbers retain the usual
# convention for rounding.
classIntervals <- function(var, n, style="quantile", rtimes=3, ..., intervalClosure=c("left", "right"), dataPrecision=NULL, warnSmallN=TRUE, warnLargeN = TRUE, largeN = 3000L, samp_prop = 0.1, gr=c("[", "]")) {
  if (is.factor(var)) stop("var is categorical")
# https://github.com/r-spatial/classInt/issues/8
  TZ <- NULL
  POSIX <- FALSE
  DATE <- FALSE
  if (!is.numeric(var)) {
    if (inherits(var, "POSIXt")) {
      TZ <- attr(var, "tzone")
      POSIX <- TRUE
      var <- unclass(as.POSIXct(var))
    } else if (inherits(var, "Date")) {
	  var <- unclass(var)
	  DATE <- TRUE
	} else {
      stop("var is not numeric")
    }
  }
  UNITS <- NULL
  if (inherits(var, "units")) {
    UNITS <- paste0(gr[1], as.character(attr(var, "units")), gr[2])
  }
# Matthieu Stigler 120705
  intervalClosure <- match.arg(intervalClosure)
  ovar <- var
  if (length(style) > 1L) style <- style[1L]
  if (any(is.na(var))) {
    warning("var has missing values, omitted in finding classes")
    var <- c(na.omit(var))
  }
  if (any(!is.finite(var))) {
    warning("var has infinite values, omitted in finding classes")
    is.na(var) <- !is.finite(var)
  }
  nobs <- length(unique(var))
  if (nobs == 1) stop("single unique value")
  # Fix 22: Diego Hernangómez
  needn <- !(style %in% c("dpih", "headtails", "box"))

  if (missing(n)) n <- nclass.Sturges(var)
  if (n < 2 & needn) stop("n less than 2")
  n <- as.integer(n)
  pars <- NULL
  if (n > nobs & needn) {
    if (warnSmallN) {
      warning(paste("n greater than number of different finite values",
      "n reset to number of different finite values", sep="\\n"))
    }
    n <- nobs
  }
  if (n == nobs & needn) {
    if (warnSmallN) {
      warning(paste("n same as number of different finite values",
      "each different finite value is a separate class", sep="\\n"))
    }
    sVar <- sort(unique(var))
    dsVar <- diff(sVar)
    brks <- c(sVar[1]-(mean(dsVar)/2), sVar[1:(length(sVar)-1)]+(dsVar/2),
      sVar[length(sVar)]+(mean(dsVar)/2))
    style="unique"
  } else {
# introduced related to https://github.com/r-spatial/classInt/issues/7
    sampling <- FALSE
    if (warnLargeN &&
      (style %in% c("kmeans", "hclust", "bclust", "fisher", "jenks"))) {
      if (nobs > largeN) {
        warning("N is large, and some styles will run very slowly; sampling imposed")
        sampling <- TRUE
        nsamp <- ifelse(samp_prop*nobs > 3000, as.integer(ceiling(samp_prop*nobs)), 3000L)
      }
    }
    if (style =="fixed") {
#      mc <- match.call(expand.dots=FALSE)
#      fixedBreaks <- sort(eval(mc$...$fixedBreaks))
# Matthieu Stigler 111110
      dots <- list(...)
      fixedBreaks <- sort(dots$fixedBreaks)
      if (is.null(fixedBreaks))
        stop("fixed method requires fixedBreaks argument")
#      if (length(fixedBreaks) != (n+1))
#        stop("mismatch between fixedBreaks and n")
      if (!is.numeric(fixedBreaks)) {
# fixedBreaks assumed to be TZ-compliant with var
        if (inherits(fixedBreaks, "POSIXt") && POSIX) {
          fixedBreaks <- unclass(as.POSIXct(fixedBreaks))
        } else if (inherits(fixedBreaks, "DATE") && DATE) {
          fixedBreaks <- unclass(fixedBreaks)
        } else {
          stop("fixedBreaks must be numeric")
        }
      }
      if (any(diff(fixedBreaks) < 0)) stop("decreasing fixedBreaks found")
      if (min(var) < fixedBreaks[1] ||
        max(var) > fixedBreaks[length(fixedBreaks)])
          warning("variable range greater than fixedBreaks")
      brks <- fixedBreaks
    } else if (style =="sd") {
      svar <- scale(var)
      pars <- c(attr(svar, "scaled:center"), attr(svar, "scaled:scale"))
      names(pars) <- c("center", "scale")
      sbrks <- pretty(x=svar, n=n, ...)
      brks <- c((sbrks * pars[2]) + pars[1])
    } else if (style =="equal") {
      brks <- seq(min(var), max(var), length.out=(n+1))
    } else if (style =="pretty") {
      brks <- c(pretty(x=var, n=n, ...))
    } else if (style =="quantile") {
# stats
      brks <- c(quantile(x=var, probs=seq(0,1,1/n), ...))
      names(brks) <- NULL
    } else if (style =="kmeans") {
# stats
      pars <- try(kmeans(x=var, centers=n, ...))
      if (inherits(pars, "try-error")) {
        warning("jittering in kmeans")
        jvar <- jitter(rep(x=var, times=rtimes))
        pars <- try(kmeans(x=jvar, centers=n, ...))
	if (inherits(pars, "try-error")) stop("kmeans failed after jittering")
        else {
          cols <- match(pars$cluster, order(c(pars$centers)))
          rbrks <- unlist(tapply(jvar, factor(cols), range))
        }
      } else {
        cols <- match(pars$cluster, order(c(pars$centers)))
        rbrks <- unlist(tapply(var, factor(cols), range))
      }
      names(rbrks) <- NULL
      brks <- .rbrks(rbrks)
    } else if (style =="hclust") {
# stats
      pars <- hclust(dist(x=var, method="euclidean"), ...)
      rcluster <- cutree(tree=pars, k=n)
      rcenters <- unlist(tapply(var, factor(rcluster), mean))
      cols <- match(rcluster, order(c(rcenters)))
      rbrks <- unlist(tapply(var, factor(cols), range))
      names(rbrks) <- NULL
      brks <- .rbrks(rbrks)
    } else if (style =="bclust") {
# e1071, class
      pars <- try(bclust(x=var, centers=n, ...))
      if (inherits(pars, "try-error")) {
        warning("jittering in bclust")
        jvar <- jitter(rep(x=var, times=rtimes))
        pars <- try(bclust(x=jvar, centers=n, ...))
	if (inherits(pars, "try-error")) stop("bclust failed after jittering")
        else {
          cols <- match(pars$cluster, order(c(pars$centers)))
          rbrks <- unlist(tapply(jvar, factor(cols), range))
        }
      } else {
        cols <- match(pars$cluster, order(c(pars$centers)))
        rbrks <- unlist(tapply(var, factor(cols), range))
      }
      names(rbrks) <- NULL
      brks <- .rbrks(rbrks)
    } else if (style =="fisher") {
# introduced related to https://github.com/r-spatial/classInt/issues/7
      if (sampling) {
        pars <- fish(x=c(range(var), sample(x=var, size=nsamp)), k=n)
      } else {
        pars <- fish(x=var, k=n)
      }
      brks <- pars[n,1]
      for (i in n:1) brks <- c(brks, (pars[i,2]+pars[(i-1),1])/2)
      brks <- c(brks, pars[1,2])
      colnames(pars) <- c("min", "max", "class mean", "class sd")
    } else if (style == "jenks") { # Jenks Optimisation Method
# change contributed by Richard Dunlap 090512
# This version of the Jenks code assumes intervals are closed on
# the right -- force it.
    	   intervalClosure = "right"
           if (storage.mode(var) != "double") storage.mode(var) <- "double"
# introduced related to https://github.com/r-spatial/classInt/issues/7
           if (sampling) {
             message("Use \"fisher\" instead of \"jenks\" for larger data sets")
             d <- sort(c(range(var), sample(x=var, size=nsamp)))
           } else {
             d <- sort(var)
           }
           k <- n
           #work<-matrix(0,k,length(d))
           mat1 <- matrix(1, length(d), k)
           mat2 <- matrix(0, length(d), k)
           mat2[2:length(d),1:k] <- .Machine$double.xmax #R's max double value?
           v<-0

           for(l in 2:length(d)){
             s1=s2=w=0
             for(m in 1:l){
               i3 <- l - m + 1
               val <- d[i3]
               s2 <- s2 + val * val
               s1 <- s1 + val
               w<-w+1
               v <- s2 - (s1 * s1) / w
               i4 <- trunc(i3 - 1)

               if(i4 !=0){
                 for(j in 2:k){
                   if(mat2[l,j] >= (v + mat2[i4, j - 1])){
                     mat1[l,j] <- i3
                     mat2[l,j] <- v + mat2[i4, j - 1]
                   }
                 }
               }
             }
             mat1[l,1] <- 1
             mat2[l,1] <- v
           }

           kclass<-1:k
           kclass[k] <- length(d)
           k <- length(d)
           last<-length(d)
           for(j in length(kclass):1){
             id <- trunc(mat1[k,j]) - 1
             kclass[j - 1] <- id
             k <- id #lower
             last <- k -1 #upper
           }
# change uncontributed by Richard Dunlap 090512
# with the specification of intervalClosure for the presentation layer,
# don't need to change this
           brks<-d[c(1, kclass)]

      } else if (style == "dpih") {
# introduced related to https://github.com/r-spatial/classInt/issues/6
           h <- dpih(var, ...)
           dots <- list(...)
           if (!is.null(dots$range.x)) {
               vmin <- dots$range.x[1]
               vmax <- dots$range.x[2]
           } else {
               vmin <- min(var)
               vmax <- max(var)
           }
           brks <- seq(vmin, vmax, by=h)
      } else if (style == "headtails") {
             # Contributed Diego Hernangómez
# https://github.com/mtennekes/tmap/issues/555
             dots <- list(...)
             thr <- ifelse(is.null(dots$thr),
                           .4,
                           dots$thr)

             thr <-  min(1,max(0, thr))
             head <- var
             breaks <- min(var, na.rm = TRUE) #Init with minimum
             for (i in 1:100) {
               mu <- mean(head, na.rm = TRUE)
               breaks <- c(breaks, mu)
               ntot <- length(head)
               #Switch head
               head <- head[head > mu]
               prop <- length(head) / ntot
               keepiter <- prop <= thr & length(head) > 1
               if (isFALSE(keepiter)) {break}
             }
             #Add max to complete intervals
             brks <- sort(unique(c(breaks,
                                   max(var, na.rm = TRUE))))
      } else if (style == "maximum") {

        # 2022-06-05 Josiah Parry
        x_sort <- sort(var)
        diffs <- diff(x_sort)

        n_breaks <- sort(diffs, decreasing = TRUE)[1:(n-1)]

        # identify values to average for breaks
        int_end_index <- which(diffs %in% n_breaks)
        int_nb_index <- which(diffs %in% n_breaks) + 1

        m <- matrix(
          c(x_sort[int_nb_index], x_sort[int_end_index]),
          ncol = 2
        )

        brks <- c(min(x_sort), rowSums(m) / 2, max(x_sort))


      } else if (style == "box"){
        # 2022-09-22 Diego Hernangomez, see:
        # https://github.com/r-spatial/classInt/issues/18
        # Adapted from:
        # https://spatialanalysis.github.io/lab_tutorials/4_R_Mapping.html#box-map
        
        dots <- list(...)
        iqr_mult <- ifelse(is.null(dots$iqr_mult), 1.5, dots$iqr_mult)
        stopifnot(iqr_mult >= 0)
        qtype <- ifelse(is.null(dots$type), 7, dots$type)
        legacy <- ifelse(is.null(dots$legacy), FALSE, dots$legacy)
        
        qv <- unname(quantile(var, type=qtype))
        iqr <- iqr_mult * (qv[4] - qv[2])
        upfence <- qv[4] + iqr
        lofence <- qv[2] - iqr
        
        # initialize break points vector
        bb <- vector(mode="numeric",length=7)
        
        # logic for lower and upper fences
        if (lofence < qv[1]) {  # no lower outliers
          if (legacy) {
            bb[1] <- lofence
            bb[2] <- floor(qv[1])
          } else {
            bb[1] <- -Inf
            bb[2] <- lofence
          }
        } else {
          bb[2] <- lofence
          bb[1] <- qv[1]
        }
        if (upfence > qv[5]) { # no upper outliers
          if (legacy) {
            bb[7] <- upfence
            bb[6] <- ceiling(qv[5])
          } else {
            bb[7] <- +Inf
            bb[6] <- upfence
          }
        } else {
          bb[6] <- upfence
          bb[7] <- qv[5]
        }
        bb[3:5] <- qv[2:4]
        
        brks <- bb
        
      } else stop(paste(style, "unknown"))
  }
  if (is.null(brks)) stop("Null breaks")
  if (POSIX) {
    ovar <- .POSIXct(ovar, TZ)
    brks <- .POSIXct(brks, TZ)
  } else if (DATE) {
    ovar <- as.Date(ovar, origin = "1970-01-01")
    brks <- as.Date(brks, origin = "1970-01-01")
  }
  res <- list(var=ovar, brks=brks)
  attr(res, "style") <- style
  attr(res, "parameters") <- pars
  attr(res, "nobs") <- nobs
  attr(res, "call") <- match.call()
# change contributed by Richard Dunlap 090512
# Add intervalClosure and dataPrecision to the attributes so they're
# available to the print method
  attr(res, "intervalClosure") <- intervalClosure
  attr(res, "dataPrecision") <- dataPrecision
  attr(res, "var_units") <- UNITS
  class(res) <- "classIntervals"
  res
}

.rbrks <- function(rbrks) {
  nb <- length(rbrks)
  if (nb < 2) stop("single break")
  brks <- c(rbrks[1], rbrks[nb])
  if (nb > 2) {
    if (nb == 3) brks <- append(brks, rbrks[2], 1)
    else {
      ins <- NULL
      for (i in as.integer(seq(2,(nb-2),2))) {
        ins <- c(ins, ((rbrks[i]+rbrks[i+1])/2))
      }
      brks <- append(brks, ins, 1)
    }
  }
  brks
}

findColours <- function(clI, pal, under="under", over="over", between="-",
  digits = getOption("digits"), cutlabels=TRUE) {
  if (!inherits(clI, "classIntervals")) stop("Class interval object required")
  if (is.null(clI$brks)) stop("Null breaks")
  if (length(pal) < 2) stop("pal must contain at least two colours")
  cols <- findCols(clI)
  palette <- colorRampPalette(pal)(length(clI$brks)-1)
  res <- palette[cols]
  attr(res, "palette") <- palette
  tab <- tableClassIntervals(cols=cols, brks=clI$brks, under=under, over=over,
    between=between, digits=digits, cutlabels=cutlabels,
    intervalClosure=attr(clI, "intervalClosure"),
    dataPrecision=attr(clI, "dataPrecision"))
  attr(res, "table") <- tab
  res
}

# change contributed by Richard Dunlap 090512
# Looks for intervalClosure attribute to allow specification of
# whether partition intervals are closed on the left or the right
findCols <- function(clI, factor = FALSE)  {
  if (!inherits(clI, "classIntervals")) stop("Class interval object required")
  if (is.null(clI$brks)) stop("Null breaks")
  if (is.null(attr(clI, "intervalClosure")) || (attr(clI, "intervalClosure") == "left")) {
  	cols <- findInterval(clI$var, clI$brks, all.inside=TRUE)
  }
  else {
	cols <- apply(array(apply(outer(clI$var, clI$brks, ">"), 1, sum)), 1, max, 1)
  }
  if (factor) {
    col_vals <- names(tableClassIntervals(cols, clI$brks))
    cols <- factor(cols, levels = 1:length(col_vals), labels = col_vals)
  }
  cols
}

# change contributed by Richard Dunlap 090512
# Added intervalClosure argument to allow specification of whether
# partition intervals are closed on the left or the right
# Added dataPrecision for rounding of the interval endpoints
tableClassIntervals <- function(cols, brks, under="under", over="over",
   between="-", digits = getOption("digits"), cutlabels=TRUE, intervalClosure=c("left", "right"), dataPrecision=NULL, unique=FALSE, var) {
# Matthieu Stigler 120705 unique
# Matthieu Stigler 120705
   intervalClosure <- match.arg(intervalClosure)
   lx <- length(brks)
   nres <- character(lx - 1)
   sep <- " "
   if (cutlabels) {
      sep <- ""
      between=","
   }

   if (is.null(intervalClosure) || (intervalClosure=="left")) {
   	left = "["
   	right = ")"
   }
   else {
   	left = "("
   	right = "]"
   }

#The two global endpoints are going through roundEndpoint to get
# formatting right, nothing more
   if (cutlabels) nres[1] <- paste("[", roundEndpoint(brks[1], intervalClosure, dataPrecision), between, roundEndpoint(brks[2], intervalClosure, dataPrecision), right, sep=sep)
   else nres[1] <- paste(under, roundEndpoint(brks[2], intervalClosure, dataPrecision), sep=sep)
   for (i in 2:(lx - 2)) {
      if (cutlabels) nres[i] <- paste(left, roundEndpoint(brks[i], intervalClosure, dataPrecision), between, roundEndpoint(brks[i + 1], intervalClosure, dataPrecision), right,
         sep=sep)
      else nres[i] <- paste(roundEndpoint(brks[i], intervalClosure, dataPrecision), between, roundEndpoint(brks[i + 1], intervalClosure, dataPrecision), sep=sep)
   }
   if (cutlabels) nres[lx - 1] <- paste(left, roundEndpoint(brks[lx - 1], intervalClosure, dataPrecision), between, roundEndpoint(brks[lx], intervalClosure, dataPrecision), "]",
     sep=sep)
   else nres[lx - 1] <- paste(over, roundEndpoint(brks[lx - 1], intervalClosure, dataPrecision), sep=sep)
   tab <- table(factor(cols, levels=1:(lx - 1)))
   names(tab) <- nres

# Matthieu Stigler 120705 unique
   ## Assign unique label for intervals containing same left-right points
  if(unique&!missing(var)){

    tab_unique<-tapply(var, cols, function(x) length(unique(x)))
#    tab_unique_vals<-tapply(var, cols, function(x) length(unique(x)))
    if(any(tab_unique==1)){
#      w.unique <-which(tab_unique==1)
      w.unique <-as.numeric(names(which(tab_unique==1)))
      cat("Class found with one single (possibly repeated) value: changed label\n")
#      cols.unique <-cols%in%names(w.unique)
      cols.unique <-cols%in%w.unique
      names(tab)[w.unique] <- tapply(var[cols.unique ], cols[cols.unique ], function(x) if(is.null(dataPrecision)) unique(x) else round(unique(x), dataPrecision))
    }
  }

   tab
}

# change contributed by Richard Dunlap 090512
# New helper method for tableClassIntervals
roundEndpoint <- function(x, intervalClosure=c("left", "right"), dataPrecision) {
# Matthieu Stigler 120705
  intervalClosure <- match.arg(intervalClosure)
   if (is.null(dataPrecision)) {
      retval <- x
   }
   else if (is.null(intervalClosure) || (intervalClosure=="left")) {
      retval <- ceiling(x * 10^dataPrecision) / 10^dataPrecision
   }
   else
   {
      retval <- floor(x * 10^dataPrecision) / 10^dataPrecision
   }
   digits = getOption("digits")
   format(retval, digits=digits, trim=TRUE)
} #FIXME output trailing zeros in decimals

print.classIntervals <- function(x, digits = getOption("digits"), ..., under="under", over="over", between="-", cutlabels=TRUE, unique=FALSE) {
   if (!inherits(x, "classIntervals")) stop("Class interval object required")
   cat("style: ", attr(x, "style"), "\n", sep="")
   UNITS <- attr(x, "var_units")
   if (is.null(UNITS)) UNITS <- ""
   else UNITS <- paste0(UNITS, " ")
   nP <- nPartitions(x)
   if (is.finite(nP)) cat("  one of ", prettyNum(nP, big.mark = ","),
      " possible partitions of this ", UNITS, "variable into ", length(x$brks)-1,
      " classes\n", sep="")
   cols <- findCols(x)
   nvar <- x$var
   if (inherits(nvar, "units")) attributes(nvar) <- NULL
   nbrks <- x$brks
   if (inherits(nbrks, "units")) attributes(nbrks) <- NULL
# change contributed by Richard Dunlap 090512
# passes the intervalClosure argument to tableClassIntervals
   tab <- tableClassIntervals(cols=cols, brks=nbrks, under=under, over=over,
    between=between, digits=digits, cutlabels=cutlabels, intervalClosure=attr(x, "intervalClosure"), dataPrecision=attr(x, "dataPrecision"), unique=unique, nvar)
   print(tab, digits=digits, ...)
   invisible(tab)
}

nPartitions <- function(x) {
  n <- attr(x, "nobs")
  if (n > 170) ret <- Inf
  else {
      k <- length(x$brks)-1
      ret <- (factorial(n - 1))/(factorial(n - k) * factorial(k - 1))
  }
  ret
}

getBclustClassIntervals <- function(clI, k) {
  if (!inherits(clI, "classIntervals")) stop("Class interval object required")
  if (missing(k)) k <- length(clI$brks)-1
  if (!inherits(attr(clI, "parameters"), "bclust"))
    stop("Class interval object not made with style=\"bclust\"")

  ovar <- clI$var
  var <- clI$var
  if (any(!is.finite(var))) is.na(var) <- !is.finite(var)
  var <- c(na.omit(var))

  obj <- attr(clI, "parameters")
  cols <- match(clusters.bclust(obj, k=k), order(centers.bclust(obj, k=k)))
  rbrks <- unlist(tapply(var, factor(cols), range))
  names(rbrks) <- NULL
  brks <- .rbrks(rbrks)

  res <- list(var=ovar, brks=brks)
  attr(res, "style") <- attr(clI, "style")
  attr(res, "parameters") <- attr(clI, "parameters")
  attr(res, "nobs") <- attr(clI, "nobs")
  attr(res, "call") <- attr(clI, "call")
  attr(res, "modified") <- c(attr(clI, "modified"), k)
  class(res) <- "classIntervals"
  res

}

getHclustClassIntervals <- function(clI, k) {
  if (!inherits(clI, "classIntervals")) stop("Class interval object required")
  if (missing(k)) k <- length(clI$brks)-1
  if (!inherits(attr(clI, "parameters"), "hclust"))
    stop("Class interval object not made with style=\"hclust\"")

  ovar <- clI$var
  var <- clI$var
  if (any(!is.finite(var))) is.na(var) <- !is.finite(var)
  var <- c(na.omit(var))

  obj <- attr(clI, "parameters")
  rcluster <- cutree(tree=obj, k=k)
  rcenters <- unlist(tapply(var, factor(rcluster), mean))
  cols <- match(rcluster, order(c(rcenters)))
  rbrks <- unlist(tapply(var, factor(cols), range))
  names(rbrks) <- NULL
  brks <- .rbrks(rbrks)

  res <- list(var=ovar, brks=brks)
  attr(res, "style") <- attr(clI, "style")
  attr(res, "parameters") <- attr(clI, "parameters")
  attr(res, "nobs") <- attr(clI, "nobs")
  attr(res, "call") <- attr(clI, "call")
  attr(res, "modified") <- c(attr(clI, "modified"), k)
  class(res) <- "classIntervals"
  res

}

fish <- function(x, k) {
   x <- sort(x)
   m <- length(x)
   k <- as.integer(k)
   work <- double(m*k)
   iwork <- integer(m*k)
   res <- double(k*4)
   out <- .Fortran("fish", as.integer(m), as.double(x), as.integer(k),
      as.integer(m), as.double(work), as.integer(m), as.integer(iwork),
      as.double(res), PACKAGE="classInt")[[8]]
   out <- matrix(out, k, 4)
   out
}