File: test_Unique.Rout.save

package info (click to toggle)
r-cran-classint 0.4-9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 316 kB
  • sloc: fortran: 65; sh: 13; ansic: 13; makefile: 2
file content (293 lines) | stat: -rw-r--r-- 14,455 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

R version 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(classInt)
> set.seed(1)
> data_censored<-c(rep(0,10), rnorm(100, mean=20,sd=1),rep(26,10))
> cl2<-classIntervals(data_censored, n=4, style="fixed",dataPrecision=2,fixedBreaks=c(-1,1,19,25,30))
> 
> print(cl2, unique=FALSE)
style: fixed
  one of 166,650 possible partitions of this variable into 4 classes
 [-1,1)  [1,19) [19,25) [25,30] 
     10      11      89      10 
> print(cl2, unique=TRUE)
style: fixed
  one of 166,650 possible partitions of this variable into 4 classes
Class found with one single (possibly repeated) value: changed label
      0  [1,19) [19,25)      26 
     10      11      89      10 
> 
> ### example from man page
> classIntervals(data_censored, n=5, style="fixed", fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30))
style: fixed
  one of 4,082,925 possible partitions of this variable into 5 classes
 [15.57,25)     [25,50)     [50,75)    [75,100) [100,155.3] 
        110          10           0           0           0 
Warning message:
In classIntervals(data_censored, n = 5, style = "fixed", fixedBreaks = c(15.57,  :
  variable range greater than fixedBreaks
> 
> print(classIntervals(data_censored, n=5, style="sd"), unique=FALSE)
style: sd
  one of 79,208,745 possible partitions of this variable into 6 classes
[-5.126688,0.8860022)  [0.8860022,6.898692)   [6.898692,12.91138) 
                   10                     0                     0 
  [12.91138,18.92407)   [18.92407,24.93676)   [24.93676,30.94945] 
                   10                    90                    10 
> print(classIntervals(data_censored, n=5, style="sd"), unique=TRUE)
style: sd
  one of 79,208,745 possible partitions of this variable into 6 classes
Class found with one single (possibly repeated) value: changed label
                   0 [0.8860022,6.898692)  [6.898692,12.91138) 
                  10                    0                    0 
 [12.91138,18.92407)  [18.92407,24.93676)                   26 
                  10                   90                   10 
> print(classIntervals(data_censored, n=5, style="equal"),  unique=TRUE)
style: equal
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
          0  [5.2,10.4) [10.4,15.6) [15.6,20.8)   [20.8,26] 
         10           0           0          81          29 
> print(classIntervals(data_censored, n=5, style="quantile"),  unique=TRUE)
style: quantile
  one of 4,082,925 possible partitions of this variable into 5 classes
       [0,19.24129) [19.24129,19.87857) [19.87857,20.39315) [20.39315,21.07048) 
                 24                  24                  24                  24 
      [21.07048,26] 
                 24 
> set.seed(1)
> print(classIntervals(data_censored, n=5, style="kmeans"),  unique=TRUE)
style: kmeans
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.11514) [19.11514,20.31048) [20.31048,24.20081) 
                 10                  12                  43                  45 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="hclust", method="complete"),  unique=TRUE)
style: hclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.01088) [19.01088,21.00347) [21.00347,24.20081) 
                 10                  11                  74                  15 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="hclust", method="single"),  unique=TRUE)
style: hclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,18.33574) [18.33574,21.78784) [21.78784,24.20081) 
                 10                   3                  94                   3 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="fisher"),  unique=TRUE)
style: fisher
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.72123) [19.72123,20.85116) [20.85116,24.20081) 
                 10                  33                  49                  18 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="jenks"),  unique=TRUE)
style: jenks
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0        (0,19.69582] (19.69582,20.82122] (20.82122,22.40162] 
                 10                  33                  49                  18 
                 26 
                 10 
> 
> print(classIntervals(data_censored, n=5, style="fixed", fixedBreaks=c(15.57, 25, 50, 75, 100, 155.30)), unique=TRUE)
style: fixed
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
 [15.57,25)          26     [50,75)    [75,100) [100,155.3] 
        110          10           0           0           0 
Warning message:
In classIntervals(data_censored, n = 5, style = "fixed", fixedBreaks = c(15.57,  :
  variable range greater than fixedBreaks
> print(classIntervals(data_censored, n=5, style="sd"), unique=TRUE)
style: sd
  one of 79,208,745 possible partitions of this variable into 6 classes
Class found with one single (possibly repeated) value: changed label
                   0 [0.8860022,6.898692)  [6.898692,12.91138) 
                  10                    0                    0 
 [12.91138,18.92407)  [18.92407,24.93676)                   26 
                  10                   90                   10 
> print(classIntervals(data_censored, n=5, style="equal"), unique=TRUE)
style: equal
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
          0  [5.2,10.4) [10.4,15.6) [15.6,20.8)   [20.8,26] 
         10           0           0          81          29 
> print(classIntervals(data_censored, n=5, style="quantile"), unique=TRUE)
style: quantile
  one of 4,082,925 possible partitions of this variable into 5 classes
       [0,19.24129) [19.24129,19.87857) [19.87857,20.39315) [20.39315,21.07048) 
                 24                  24                  24                  24 
      [21.07048,26] 
                 24 
> set.seed(1)
> print(classIntervals(data_censored, n=5, style="kmeans"), unique=TRUE)
style: kmeans
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.11514) [19.11514,20.31048) [20.31048,24.20081) 
                 10                  12                  43                  45 
                 26 
                 10 
> set.seed(1)
> print(classIntervals(data_censored, n=5, style="kmeans", intervalClosure="right"), unique=TRUE)
style: kmeans
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  (8.89265,19.11514] (19.11514,20.31048] (20.31048,24.20081] 
                 10                  12                  43                  45 
                 26 
                 10 
> set.seed(1)
> print(classIntervals(data_censored, n=5, style="kmeans", dataPrecision=0), unique=TRUE)
style: kmeans
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
      0  [9,20) [20,21) [21,25)      26 
     10      12      43      45      10 
> set.seed(1)
> print(classIntervals(data_censored, n=5, style="kmeans"), cutlabels=FALSE, unique=TRUE)
style: kmeans
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  8.89265 - 19.11514 19.11514 - 20.31048 20.31048 - 24.20081 
                 10                  12                  43                  45 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="hclust", method="complete"), unique=TRUE)
style: hclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.01088) [19.01088,21.00347) [21.00347,24.20081) 
                 10                  11                  74                  15 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="hclust", method="single"), unique=TRUE)
style: hclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,18.33574) [18.33574,21.78784) [21.78784,24.20081) 
                 10                   3                  94                   3 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="fisher"), unique=TRUE)
style: fisher
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.72123) [19.72123,20.85116) [20.85116,24.20081) 
                 10                  33                  49                  18 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="jenks"), unique=TRUE)
style: jenks
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0        (0,19.69582] (19.69582,20.82122] (20.82122,22.40162] 
                 10                  33                  49                  18 
                 26 
                 10 
> print(classIntervals(data_censored, style="headtails"), unique=TRUE)
style: headtails
  one of 101 possible partitions of this variable into 2 classes
 [0,18.92407) [18.92407,26] 
           20           100 
> print(classIntervals(data_censored, style="headtails", thr = 1))
style: headtails
  one of 166,650 possible partitions of this variable into 4 classes
       [0,18.92407) [18.92407,20.86153) [20.86153,23.03872)       [23.03872,26] 
                 20                  72                  18                  10 
> print(classIntervals(data_censored, style="headtails", thr = 0))
style: headtails
  one of 101 possible partitions of this variable into 2 classes
 [0,18.92407) [18.92407,26] 
           20           100 
> print(classIntervals(data_censored, style="box", iqr_mult = 0))
style: box
  one of 79,208,745 possible partitions of this variable into 6 classes
       [0,19.38567) [19.38567,19.38567) [19.38567,20.11391) [20.11391,20.77193) 
                 30                   0                  30                  30 
[20.77193,20.77193)       [20.77193,26] 
                  0                  30 
> print(classIntervals(data_censored, style="box"))
style: box
  one of 79,208,745 possible partitions of this variable into 6 classes
       [0,17.30627) [17.30627,19.38567) [19.38567,20.11391) [20.11391,20.77193) 
                 10                  20                  30                  30 
[20.77193,22.85133)       [22.85133,26] 
                 20                  10 
> x <- c(0, 0, 0, 1, 2, 50)
> print(classIntervals(x, n=3, style="fisher"), unique=TRUE)
style: fisher
  one of 3 possible partitions of this variable into 3 classes
Class found with one single (possibly repeated) value: changed label
       0 [0.5,26)       50 
       3        2        1 
> print(classIntervals(x, n=3, style="jenks"), unique=TRUE)
style: jenks
  one of 3 possible partitions of this variable into 3 classes
Class found with one single (possibly repeated) value: changed label
    0 (0,2]    50 
    3     2     1 
> if (getRversion() > "3.5.3") {
+   suppressWarnings(set.seed(1, sample.kind=c("Rounding")))
+ } else {
+   set.seed(1)
+ }
> print(classIntervals(data_censored, n=5, style="bclust", verbose=FALSE),  unique=TRUE)
style: bclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.01088) [19.01088,21.00347) [21.00347,24.20081) 
                 10                  11                  74                  15 
                 26 
                 10 
> print(classIntervals(data_censored, n=5, style="bclust", hclust.method="complete", verbose=FALSE), unique=TRUE)
style: bclust
  one of 4,082,925 possible partitions of this variable into 5 classes
Class found with one single (possibly repeated) value: changed label
                  0  [8.89265,19.79106) [19.79106,21.28327) [21.28327,24.20081) 
                 10                  34                  57                   9 
                 26 
                 10 
> 
> # the log-likelihood returns a valid logLik object.
> stopifnot(
+   identical(
+     round(logLik(classIntervals(rep(1:3, each=10), n=2, style="jenks")), 5),
+     structure(-14.52876, df = 2, nobs = 30L, class = "logLik")
+   )
+ )
> # logLik for exact intervals (a single value is the unique member of an
> # interval) yields a likelihood of zero.
> stopifnot(
+   identical(
+     suppressWarnings(logLik(classIntervals(rep(1:3, each=10), n=3, style="jenks"))),
+     structure(0, df = 3, nobs = 30L, class = "logLik")
+   )
+ )
> 
> proc.time()
   user  system elapsed 
   0.37    0.06    0.68