File: headtailsR.Rmd

package info (click to toggle)
r-cran-classint 0.4-9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 316 kB
  • sloc: fortran: 65; sh: 13; ansic: 13; makefile: 2
file content (653 lines) | stat: -rw-r--r-- 20,979 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
---
title: "Head/Tails breaks"
author: "Diego Hernangomez"
date: '`r Sys.Date()`'
output: 
  rmarkdown::html_vignette:
    toc: true
    number_sections: false 
    toc_depth: 1
bibliography: refs_ht.bib
vignette: >
  %\VignetteIndexEntry{"Head/Tails breaks"}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

>*There are far more ordinary people (say, 80 percent) than extraordinary people (say, 20 percent); this is often characterized by the 80/20 principle, based on the observation made by the Italian economist Vilfredo Pareto in 1906 that 80% of land in Italy was owned by 20% of the population. A histogram of the data values for these phenomena would reveal a right-skewed or heavy-tailed distribution. How to map the data with the heavy-tailed distribution?*
> <div style="text-align: right"> @Jiang_2013 </div>




# Abstract

This vignette discusses the implementation of the "Head/tail breaks" style (@Jiang_2013) in the `classIntervals` function. A step-by-step example is presented in order to clarify the method. A case study using `spData::afcon` is also included, as well as a test suite checking the performance and validation of the implementation.


```{r setup, include=FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
```



# Introduction
The **Head/tail breaks**, sometimes referred as **ht-index** (@Jiang2_2013), is a classification scheme introduced by @Jiang_2013 in order to find groupings or hierarchy for data with a heavy-tailed distribution. 

Heavy-tailed distributions are heavily right skewed, with a minority of large values in the head and a majority of small values in the tail. This imbalance between the head and tail, or between many small values and a few large values, can be expressed as *"far more small things than large things"*.

Heavy tailed distributions are commonly characterized by a power law, a lognormal or an exponential function. Nature, society, finance (@vasicek2012) and our daily lives are full of rare and extreme events,
which are termed "black swan events" (@taleb_black_2008). This line of thinking provides a good reason to reverse our thinking by focusing on low-frequency events.


```{r charheavytail,fig.show='hold'}
library(classInt)

#1. Characterization of heavy-tail distributions----
set.seed(1234)
#Pareto distribution a=1 b=1.161 n=1000
sample_par <- 1 / (1 - runif(1000)) ^ (1 / 1.161)
opar <- par(no.readonly = TRUE)
par(mar = c(2, 4, 3, 1), cex = 0.8)
plot(
  sort(sample_par, decreasing = TRUE),
  type = "l",
  ylab = "F(x)",
  xlab = "",
  main = "80/20 principle"
)
abline(h = quantile(sample_par, .8) ,
       lty = 2,
       col = "red3")
abline(v = 0.2*length(sample_par) ,
       lty = 2,
       col = "darkblue")
legend(
  "topleft",
  legend = c("F(x): p80", "x: Top 20%"),
  col = c("red3", "darkblue"),
  lty = 2,
  cex = 0.8
)

hist(
  sample_par,
  n = 100,
  xlab = "",
  main = "Histogram",
  col = "grey50",
  border = NA, 
  probability = TRUE
)
par(opar)

```



# Breaking method
The method itself consists on a four-step process performed recursively until a stopping condition is satisfied. Given a vector of values `var` the process can be described as follows:

1. Compute `mu = mean(var)`.
2. Break `var` into the `tail` (as `var < mu`) and the `head` (as `var > mu`).
3. Assess if the proportion of `head` over `var` is lower or equal than a given threshold (i.e. `length(head)/length(var) <= thr`)
4. If 3 is `TRUE`, repeat 1 to 3 until the condition is `FALSE` or no more partitions are possible (i.e. `head` has less than two elements expressed as `length(head) < 2`). 

It is important to note that, at the beginning of a new iteration, `var` is replaced by `head`. The underlying hypothesis is to create partitions until the head and the tail are balanced in terms of distribution.So the stopping criteria is satisfied when the last head and the last tail are evenly balanced. 

In terms of threshold, @Jiang3_2013 set 40% as a good approximation, meaning that if the head contains more than 40% of the observations the distribution is not considered heavy-tailed.

The final breaks are the vector of consecutive `mu`.



# Step by step example
We reproduce here the pseudo-code^[The method implemented in `classInt` corresponds to head/tails 1.0 as named in this article.] as per @Jiang_2019:
```
Recursive function Head/tail Breaks:
 Rank the input data from the largest to the smallest
 Break the data into the head and the tail around the mean;
 // the head for those above the mean
 // the tail for those below the mean
 While (head <= 40%):
 Head/tail Breaks (head);
End Function
```

A step-by-step example in **R** (for illustrative purposes) has been developed:

```{r stepbystep, fig.show='hold'}

opar <- par(no.readonly = TRUE)
par(mar = c(2, 2, 3, 1), cex = 0.8)
var <- sample_par
thr <- .4
brks <- c(min(var), max(var))  #Initialise with min and max

sum_table <- data.frame(
  iter = 0,
  mu = NA,
  prop = NA,
  n_var = NA,
  n_head = NA
)
#Pars for chart
limchart <- brks
#Iteration
for (i in 1:10) {
  mu <- mean(var)
  brks <- sort(c(brks, mu))
  head <- var[var > mu]
  prop <- length(head) / length(var)
  stopit <- prop < thr & length(head) > 1
  sum_table = rbind(sum_table,
                    c(i, mu, prop, length(var), length(head)))
  hist(
    var,
    main = paste0("Iter ", i),
    breaks = 50,
    col = "grey50",
    border = NA,
    xlab = "",
    xlim = limchart
  )
  abline(v = mu, col = "red3", lty = 2)
  ylabel <- max(hist(var, breaks = 50, plot = FALSE)$counts)
  labelplot <- paste0("PropHead: ", round(prop * 100, 2), "%")
  text(
    x = mu,
    y = ylabel,
    labels = labelplot,
    cex = 0.8,
    pos = 4
  )
  legend(
    "right",
    legend = paste0("mu", i),
    col = c("red3"),
    lty = 2,
    cex = 0.8
  )
  if (isFALSE(stopit))
    break
  var <- head
}
par(opar)
```

As it can be seen, in each iteration the resulting head gradually loses the high-tail property, until the stopping condition is met.  

```{r hiddtable, echo=FALSE}
sum_table$mu <- round(sum_table$mu,4)
sum_table$prop <- paste0(round(100*sum_table$prop,2),"%")
knitr::kable(sum_table[!is.na(sum_table$mu),], row.names = FALSE)
```

The resulting breaks are then defined as `breaks = c(min(var), mu(iter=1), ..., mu(iter), max(var))`.



# Implementation in `classInt` package

The implementation in the `classIntervals` function should replicate the results:
```{r checkmethod}
ht_sample_par <- classIntervals(sample_par, style = "headtails")
brks == ht_sample_par$brks
print(ht_sample_par)
```

As stated in @Jiang_2013, the number  of breaks is naturally determined, however the `thr` parameter could help to adjust the final number. A lower value on `thr` would provide less breaks while a larger `thr` would increase the number, if the underlying distribution follows the *"far more small things than large things"* principle.
```{r examplesimp, fig.show='hold', fig.asp=.7}
opar <- par(no.readonly = TRUE)
par(mar = c(2, 2, 2, 1), cex = 0.8)

pal1 <- c("wheat1", "wheat2", "red3")

# Minimum: single break
print(classIntervals(sample_par, style = "headtails", thr = 0))
plot(
  classIntervals(sample_par, style = "headtails", thr = 0),
  pal = pal1,
  main = "thr = 0"
)

# Two breaks
print(classIntervals(sample_par, style = "headtails", thr = 0.2))
plot(
  classIntervals(sample_par, style = "headtails", thr = 0.2),
  pal = pal1,
  main = "thr = 0.2"
)

# Default breaks: 0.4
print(classIntervals(sample_par, style = "headtails"))
plot(classIntervals(sample_par, style = "headtails"),
     pal = pal1,
     main = "thr = Default")

# Maximum breaks
print(classIntervals(sample_par, style = "headtails", thr = 1))
plot(
  classIntervals(sample_par, style = "headtails", thr = 1),
  pal = pal1,
  main = "thr = 1"
)
par(opar)
```

The method always returns at least one break, corresponding to `mean(var)`.



# Case study

@Jiang_2013 states that "the new classification scheme is more natural than the natural breaks in finding the groupings or hierarchy for data with a heavy-tailed distribution." (p. 482), referring to Jenks' natural breaks method. In this case study we would compare "headtails" vs. "fisher", that is the alias for the Fisher-Jenks algorithm and it is always preferred to the "jenks" style (see `?classIntervals`). For this example we will use the `afcon` dataset from `spData` package.

```{r loadspdata, message=FALSE}
library(spData)
data(afcon, package = "spData")
```

Let's have a look to the Top 10 values and the distribution of the variable `totcon` (index of total conflict 1966-78):

```{r summspdata, fig.show='hold'}

# Top10
knitr::kable(head(afcon[order(afcon$totcon, decreasing = TRUE),c("name","totcon")],10))

opar <- par(no.readonly = TRUE)
par(mar = c(4, 4, 3, 1), cex = 0.8)
hist(afcon$totcon,
     n = 20,
     main = "Histogram",
     xlab = "totcon",
     col = "grey50",
     border = NA, )
plot(
  density(afcon$totcon),
  main = "Distribution",
  xlab = "totcon",
)
par(opar)

```

The data shows that EG and SU data present a clear hierarchy over the rest of values. As per the histogram, we can confirm a heavy-tailed distribution and therefore the *"far more small things than large things"* principle.  

As a testing proof, on top of "headtails" and "fisher" we  would use also "quantile" to have a broader view on the different breaking styles. As "quantile" is a position-based metric, it doesn't account for the magnitude of F(x) (hierarchy), so the breaks are solely defined by the position of x on the distribution.

Applying the three aforementioned methods to break the data:

```{r breaksample,fig.show='hold'}
brks_ht <- classIntervals(afcon$totcon, style = "headtails")
print(brks_ht)
#Same number of classes for "fisher"
nclass <- length(brks_ht$brks) - 1
brks_fisher <-  classIntervals(afcon$totcon, style = "fisher",
                               n = nclass)
print(brks_fisher)

brks_quantile <- classIntervals(afcon$totcon, style = "quantile",
                                n = nclass)
print(brks_quantile)

pal1 <- c("wheat1", "wheat2", "red3")
opar <- par(no.readonly = TRUE)
par(mar = c(2, 2, 2, 1), cex = 0.8)
plot(brks_ht, pal = pal1, main = "headtails")
plot(brks_fisher, pal = pal1, main = "fisher")
plot(brks_quantile, pal = pal1, main = "quantile")
par(opar)
```

It is observed that the top three classes of "headtails" enclose 5 observations, whereas "fisher" includes 13 observations. In terms of classification, "headtails" breaks focuses more on extreme values.

The next plot compares a continuous distribution of `totcon` re-escalated to a range of `[1,nclass]` versus the distribution across breaks for each style. The continuous distribution has been offset by -0.5 in order to align the continuous and the discrete distributions.
```{r benchmarkbreaks, fig.show='hold', fig.width=7}
#Helper function to rescale values
help_reescale <- function(x, min = 1, max = 10) {
  r <- (x - min(x)) / (max(x) - min(x))
  r <- r * (max - min) + min
  return(r)
}
afcon$ecdf_class <- help_reescale(afcon$totcon,
                                  min = 1 - 0.5,
                                  max = nclass - 0.5)
afcon$ht_breaks <-  cut(afcon$totcon,
                        brks_ht$brks,
                        labels = FALSE,
                        include.lowest = TRUE)

afcon$fisher_breaks <-  cut(afcon$totcon,
                            brks_fisher$brks,
                            labels = FALSE,
                            include.lowest = TRUE)

afcon$quantile_break <-  cut(afcon$totcon,
                             brks_quantile$brks,
                             labels = FALSE,
                             include.lowest = TRUE)

opar <- par(no.readonly = TRUE)
par(mar = c(4, 4, 1, 1), cex = 0.8)
plot(
  density(afcon$ecdf_class),
  ylim = c(0, 0.8),
  lwd = 2,
  main = "",
  xlab = "class"
)
lines(density(afcon$ht_breaks), col = "darkblue", lty = 2)
lines(density(afcon$fisher_breaks), col = "limegreen", lty = 2)
lines(density(afcon$quantile_break),
      col = "red3",
      lty = 2)
legend("topright",
       legend = c("Continuous", "headtails",
                  "fisher", "quantile"),
  col = c("black", "darkblue", "limegreen", "red3"),
  lwd = c(2, 1, 1, 1),
  lty = c(1, 2, 2, 2),
  cex = 0.8
)
par(opar)
```

It can be observed that the distribution of "headtails" breaks is also heavy-tailed, and closer to the original distribution. On the other extreme, "quantile" provides a quasi-uniform distribution, ignoring the `totcon` hierarchy

In terms of data visualization, we compare here the final map using the techniques mentioned above. On this plotting exercise:

- `cex` of points are always between `1` and `5`.
- For the  continuous approach, no classes are provided. This plot will be used as the reference.
- For all the rest of styles, `col` and `cex` on each point is defined as per the class of that point.

```{r finalplot , fig.show='hold', fig.asp=1.2}
custompal <- c("#FE9F6D99",
               "#DE496899",
               "#8C298199",
               "#3B0F7099",
               "#00000499")

afcon$cex_points <- help_reescale(afcon$totcon,
                                  min = 1,
                                  max = 5)
opar <- par(no.readonly = TRUE)
par(mar = c(1.5, 1.5, 2, 1.5), cex = 0.8)
# Plot continuous
plot(
  x = afcon$x,
  y = afcon$y,
  axes = FALSE,
  cex = afcon$cex_points,
  pch = 20,
  col = "grey50",
  main = "Continuous",
)

mcont <- (max(afcon$totcon) - min(afcon$totcon)) / 4
legcont <- 1:5 * mcont - (mcont - min(afcon$totcon))

legend("bottomleft",
       xjust = 1,
       bty = "n",
       legend = paste0("   ",
                  round(legcont, 0)
                  ),
       col = "grey50",
  pt.cex = seq(1, 5),
  pch = 20,
  title = "totcon"
)
box()

plot(
  x = afcon$x,
  y = afcon$y,
  axes = FALSE,
  cex = afcon$ht_breaks,
  pch = 20,
  col = custompal[afcon$ht_breaks],
  main = "headtails"
)
legend(
  "bottomleft",
  xjust = 1,
  bty = "n",
  legend = paste0("   ",
                  round(brks_ht$brks[2:6],0)
                  ),
  col = custompal,
  pt.cex = seq(1, 5),
  pch = 20,
  title = "totcon"
)
box()

plot(
  x = afcon$x,
  y = afcon$y,
  axes = FALSE,
  cex = afcon$fisher_breaks,
  pch = 20,
  col = custompal[afcon$fisher_breaks],
  main = "fisher"
)
legend(
  "bottomleft",
  xjust = 1,
  bty = "n",
  legend = paste0("   ",
                  round(brks_fisher$brks[2:6],0)
                  ),
  col = custompal,
  pt.cex = seq(1, 5),
  pch = 20,
  title = "totcon"
)
box()

plot(
  x = afcon$x,
  y = afcon$y,
  axes = FALSE,
  cex = afcon$quantile_break,
  pch = 20,
  col = custompal[afcon$quantile_break],
  main = "quantile"
)
legend(
  "bottomleft",
  xjust = 1,
  bty = "n",
  legend = paste0("   ",
                  round(brks_quantile$brks[2:6],0)
                  ),
  col = custompal,
  pt.cex = seq(1, 5),
  pch = 20,
  title = "totcon"
)
box()

par(opar)

```


As per the results, "headtails" seems to provide a better understanding of the most extreme values when the result is compared against the continuous plot. The "quantile" style, as expected, just provides a clustering without taking into account the real hierarchy. The "fisher" plot is in-between of these two interpretations. 

It is also important to note that "headtails" and "fisher" reveal different information that can be useful depending of the context. While "headtails" highlights the outliers, it fails on providing a good clustering on the tail, while "fisher" seems to reflect better these patterns. This can be observed on the values of Western Africa and the Niger River Basin, where "headtails" doesn't highlight any special cluster of conflicts, "fisher" suggests a potential cluster. This can be confirmed on the histogram generated previously, where a concentration of `totcon` around 1,000 is visible.



# Testing and benchmark

On this section the performance of the "headtails" implementation is tested, in terms of speed and handling of corner cases. A small benchmark with another styles is also presented.

Testing has been performed over the following distributions:

**Heavy-tailed distributions**

- Pareto
- Exponential
- Log-normal
- Weibull
- Log-Cauchy, also known as super-heavy tail distribution (@Falk_2011, p. 80, @Fraga_2009)

**Non heavy-tailed distributions**

- Normal (non heavy-tailed)
- Truncated Normal (left-tailed)
- Uniform distribution

```{r distest, fig.show='hold'}
#Init samples
set.seed(2389)

#Pareto distributions a=7 b=14
paretodist <- 7 / (1 - runif(5000000)) ^ (1 / 14)
#Exponential dist
expdist <- rexp(5000000)
#Lognorm
lognormdist <- rlnorm(5000000)
#Weibull
weibulldist <- rweibull(5000000, 1, scale = 5)
#LogCauchy "super-heavy tail"
logcauchdist <- exp(rcauchy(5000000, 2, 4))
#Remove Inf 
logcauchdist <- logcauchdist[logcauchdist < Inf]

#Normal dist
normdist <- rnorm(5000000)
#Left-tailed distr
leftnorm <-
  sample(rep(normdist[normdist < mean(normdist)], 3), size = 5000000)

#Uniform distribution
unifdist <- runif(5000000)

```

Let's define a helper function and proceed to run the whole test suite:

```{r testresults, fig.show='hold'}
testresults <- data.frame(
  Title = NA,
  style = NA,
  nsample  = NA,
  thresold = NA,
  nbreaks = NA,
  time_secs = NA
)

benchmarkdist <-
  function(dist,
           style = "headtails",
           thr = 0.4,
           title = "",
           plot = FALSE) {
    init <- Sys.time()
    br <- classIntervals(dist, style = style, thr = thr)
    a <- Sys.time() - init
    test <- data.frame(
      Title = title,
      style  = style,
      nsample  = format(length(br$var), 
                        scientific = FALSE, big.mark = ","),
      thresold = thr,
      nbreaks = length(br$brks) - 1,
      time_secs = as.character(round(a,4))
    )
    testresults <- unique(rbind(testresults, test))
    
    if (plot) {
      plot(
        density(br$var,
                from = quantile(dist,.0005),
                to = quantile(dist,.9995)
                ),
        col = "black",
        cex.main = .9,
        main = paste0(
          title,
          " ",
          style,
          ", thr =",
          thr,
          ", nbreaks = ",
          length(br$brks) - 1
        ),
        ylab = "",
        xlab = ""
      )
      abline(v = br$brks,
             col = "red3",
             lty = 2)
    }
    return(testresults)
  }
opar <- par(no.readonly = TRUE)
par(mar = c(2, 2, 2, 2), cex = 0.8)

# Pareto----
testresults <- benchmarkdist(paretodist, title = "Pareto", plot = TRUE)
testresults <- benchmarkdist(paretodist, title = "Pareto", thr = 0)
testresults <- benchmarkdist(paretodist, title = "Pareto", thr = .75, plot = TRUE)

#Sample 2,000 obs
set.seed(1234)
Paretosamp <- sample(paretodist, 2000)
testresults <- benchmarkdist(Paretosamp,
                             title = "Pareto sample",
                             style = "fisher",
                             plot = TRUE)
testresults <- benchmarkdist(Paretosamp,
                             title = "Pareto sample",
                             style = "headtails",
                             plot = TRUE)


#Exponential----
testresults <- benchmarkdist(expdist, title = "Exponential", plot = TRUE)
testresults <- benchmarkdist(expdist, title = "Exponential", thr = 0)
testresults <- benchmarkdist(expdist, title = "Exponential", thr = 1)
testresults <- benchmarkdist(expdist, title = "Exponential",
                             style = "quantile", plot = TRUE)

#Weibull-----
testresults <- benchmarkdist(weibulldist, title = "Weibull", plot = TRUE)
testresults <- benchmarkdist(weibulldist, title = "Weibull", thr = 0)
testresults <- benchmarkdist(weibulldist, title = "Weibull", thr = 1)

#Logcauchy
testresults <- benchmarkdist(logcauchdist, title = "LogCauchy", plot = TRUE)
testresults <- benchmarkdist(logcauchdist, title = "LogCauchy", thr = 0)
testresults <- benchmarkdist(logcauchdist, title = "LogCauchy", thr = 1)

#Normal----
testresults <- benchmarkdist(normdist, title = "Normal", plot = TRUE)
testresults <- benchmarkdist(normdist, title = "Normal", thr = 0)
testresults <- benchmarkdist(normdist, title = "Normal", thr = 1, plot = TRUE)

#Truncated Left-tail Normal----
testresults <- benchmarkdist(leftnorm, title = "Left Normal", plot = TRUE)
testresults <- benchmarkdist(leftnorm, title = "Left Normal", thr = -100)
testresults <- benchmarkdist(leftnorm, title = "Left Normal", plot = TRUE, thr = 500)

#Uniform----
testresults <- benchmarkdist(unifdist, title = "Uniform", plot = TRUE, thr = 0.7)
testresults <- benchmarkdist(unifdist, title = "Uniform", thr = 0)
testresults <- benchmarkdist(unifdist, title = "Uniform", plot = TRUE, thr = 1)
par(opar)

# Results
knitr::kable(testresults[-1, ], row.names = FALSE)
```

The implementation works as expected, with a good performance given the size of the sample, and also compares well with another current implementations in `classIntervals`.


# References