1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
new_naive_time_from_fields <- function(fields, precision, names) {
new_time_point_from_fields(fields, precision, CLOCK_NAIVE, names)
}
# ------------------------------------------------------------------------------
naive_days <- function(n = integer()) {
names <- NULL
duration <- duration_days(n)
new_naive_time_from_fields(duration, PRECISION_DAY, names)
}
naive_seconds <- function(n = integer()) {
names <- NULL
duration <- duration_seconds(n)
new_naive_time_from_fields(duration, PRECISION_SECOND, names)
}
# ------------------------------------------------------------------------------
#' Is `x` a naive-time?
#'
#' This function determines if the input is a naive-time object.
#'
#' @param x `[object]`
#'
#' An object.
#'
#' @return `TRUE` if `x` inherits from `"clock_naive_time"`, otherwise `FALSE`.
#'
#' @export
#' @examples
#' is_naive_time(1)
#' is_naive_time(as_naive_time(duration_days(1)))
is_naive_time <- function(x) {
inherits(x, "clock_naive_time")
}
check_naive_time <- function(x, ..., arg = caller_arg(x), call = caller_env()) {
check_inherits(x, what = "clock_naive_time", arg = arg, call = call)
}
# ------------------------------------------------------------------------------
#' Parsing: naive-time
#'
#' @description
#' `naive_time_parse()` is a parser into a naive-time.
#'
#' `naive_time_parse()` is useful when you have date-time strings like
#' `"2020-01-01T01:04:30"`. If there is no attached UTC offset or time zone
#' name, then parsing this string as a naive-time is your best option. If
#' you know that this string should be interpreted in a specific time zone,
#' parse as a naive-time, then use [as_zoned_time()].
#'
#' The default options assume that `x` should be parsed at second precision,
#' using a `format` string of `"%Y-%m-%dT%H:%M:%S"`. This matches the default
#' result from calling `format()` on a naive-time.
#'
#' _`naive_time_parse()` ignores both the `%z` and `%Z` commands._
#'
#' If your date-time strings contain a full time zone name and a UTC offset, use
#' [zoned_time_parse_complete()]. If they contain a time zone abbreviation, use
#' [zoned_time_parse_abbrev()].
#'
#' If your date-time strings contain a UTC offset, but not a full time zone
#' name, use [sys_time_parse()].
#'
#' @inheritSection zoned-parsing Full Precision Parsing
#'
#' @inheritParams sys_time_parse
#'
#' @return A naive-time.
#'
#' @export
#' @examples
#' naive_time_parse("2020-01-01T05:06:07")
#'
#' # Day precision
#' naive_time_parse("2020-01-01", precision = "day")
#'
#' # Nanosecond precision, but using a day based format
#' naive_time_parse("2020-01-01", format = "%Y-%m-%d", precision = "nanosecond")
#'
#' # Remember that the `%z` and `%Z` commands are ignored entirely!
#' naive_time_parse(
#' "2020-01-01 -4000 America/New_York",
#' format = "%Y-%m-%d %z %Z"
#' )
#'
#' # ---------------------------------------------------------------------------
#' # Fractional seconds and POSIXct
#'
#' # If you have a string with fractional seconds and want to convert it to
#' # a POSIXct, remember that clock treats POSIXct as a second precision type.
#' # Ideally, you'd use a clock type that can support fractional seconds, but
#' # if you really want to parse it into a POSIXct, the correct way to do so
#' # is to parse the full fractional time point with the correct `precision`,
#' # then round to seconds using whatever convention you require, and finally
#' # convert that to POSIXct.
#' x <- c("2020-01-01T00:00:00.123", "2020-01-01T00:00:00.555")
#'
#' # First, parse string with full precision
#' x <- naive_time_parse(x, precision = "millisecond")
#' x
#'
#' # Then round to second with a floor, ceiling, or round to nearest
#' time_point_floor(x, "second")
#' time_point_round(x, "second")
#'
#' # Finally, convert to POSIXct
#' as_date_time(time_point_round(x, "second"), zone = "UTC")
naive_time_parse <- function(
x,
...,
format = NULL,
precision = "second",
locale = clock_locale()
) {
check_dots_empty0(...)
check_time_point_precision(precision)
precision <- precision_to_integer(precision)
fields <- time_point_parse(
x = x,
format = format,
precision = precision,
locale = locale,
clock = CLOCK_NAIVE
)
new_naive_time_from_fields(fields, precision, names(x))
}
# ------------------------------------------------------------------------------
#' Convert to a naive-time
#'
#' @description
#' `as_naive_time()` converts `x` to a naive-time.
#'
#' You can convert to a naive-time from any calendar type, as long as it has
#' at least day precision. There also must not be any invalid dates. If invalid
#' dates exist, they must first be resolved with [invalid_resolve()].
#'
#' Converting to a naive-time from a sys-time or zoned-time retains the printed
#' time, but drops the assumption that the time should be interpreted with any
#' specific time zone.
#'
#' Converting to a naive-time from a duration just wraps the duration in a
#' naive-time object, there is no assumption about the time zone. The duration
#' must have at least day precision.
#'
#' There are convenience methods for converting to a naive-time from R's
#' native date and date-time types. Like converting from a zoned-time, these
#' retain the printed time.
#'
#' @inheritParams rlang::args_dots_empty
#'
#' @param x `[object]`
#'
#' An object to convert to a naive-time.
#'
#' @return A naive-time vector.
#'
#' @export
#' @examples
#' x <- as.Date("2019-01-01")
#' as_naive_time(x)
#'
#' ym <- year_month_day(2019, 02)
#'
#' # A minimum of day precision is required
#' try(as_naive_time(ym))
#'
#' ymd <- set_day(ym, 10)
#' as_naive_time(ymd)
as_naive_time <- function(x, ...) {
UseMethod("as_naive_time")
}
#' @export
as_naive_time.default <- function(x, ...) {
stop_clock_unsupported(x)
}
#' @export
as_naive_time.clock_naive_time <- function(x, ...) {
check_dots_empty0(...)
x
}
# ------------------------------------------------------------------------------
#' @export
as_sys_time.clock_naive_time <- function(x, ...) {
check_dots_empty0(...)
new_sys_time_from_fields(
x,
time_point_precision_attribute(x),
clock_rcrd_names(x)
)
}
#' Convert to a zoned-time from a naive-time
#'
#' @description
#' This is a naive-time method for the [as_zoned_time()] generic.
#'
#' Converting to a zoned-time from a naive-time retains the printed time,
#' but changes the underlying duration, depending on the `zone` that you choose.
#'
#' Naive-times are time points with a yet-to-be-determined time zone. By
#' converting them to a zoned-time, all you are doing is specifying that
#' time zone while attempting to keep all other printed information the
#' same (if possible).
#'
#' If you want to retain the underlying duration, try converting to a zoned-time
#' [from a sys-time][as-zoned-time-sys-time], which is a time point
#' interpreted as having a UTC time zone.
#'
#' @section Daylight Saving Time:
#'
#' Converting from a naive-time to a zoned-time is not always possible due to
#' daylight saving time issues. There are two types of these issues:
#'
#' _Nonexistent_ times are the result of daylight saving time "gaps".
#' For example, in the America/New_York time zone, there was a daylight
#' saving time gap 1 second after `"2020-03-08 01:59:59"`, where the clocks
#' changed from `01:59:59 -> 03:00:00`, completely skipping the 2 o'clock hour.
#' This means that if you had a naive time of `"2020-03-08 02:30:00"`, you
#' couldn't convert that straight into a zoned-time with this time zone. To
#' resolve these issues, the `nonexistent` argument can be used to specify
#' one of many nonexistent time resolution strategies.
#'
#' _Ambiguous_ times are the result of daylight saving time "fallbacks".
#' For example, in the America/New_York time zone, there was a daylight
#' saving time fallback 1 second after `"2020-11-01 01:59:59 EDT"`, at which
#' point the clocks "fell backwards" by 1 hour, resulting in a printed time of
#' `"2020-11-01 01:00:00 EST"` (note the EDT->EST shift). This resulted in two
#' 1 o'clock hours for this day, so if you had a naive time of
#' `"2020-11-01 01:30:00"`, you wouldn't be able to convert that directly
#' into a zoned-time with this time zone, as there is no way for clock to know
#' which of the two ambiguous times you wanted. To resolve these issues,
#' the `ambiguous` argument can be used to specify one of many ambiguous
#' time resolution strategies.
#'
#' @inheritParams rlang::args_dots_empty
#'
#' @param x `[clock_naive_time]`
#'
#' A naive-time to convert to a zoned-time.
#'
#' @param zone `[character(1)]`
#'
#' The zone to convert to.
#'
#' @param nonexistent `[character / NULL]`
#'
#' One of the following nonexistent time resolution strategies, allowed to be
#' either length 1, or the same length as the input:
#'
#' - `"roll-forward"`: The next valid instant in time.
#'
#' - `"roll-backward"`: The previous valid instant in time.
#'
#' - `"shift-forward"`: Shift the nonexistent time forward by the size of
#' the daylight saving time gap.
#'
#' - `"shift-backward`: Shift the nonexistent time backward by the size of
#' the daylight saving time gap.
#'
#' - `"NA"`: Replace nonexistent times with `NA`.
#'
#' - `"error"`: Error on nonexistent times.
#'
#' Using either `"roll-forward"` or `"roll-backward"` is generally
#' recommended over shifting, as these two strategies maintain the
#' _relative ordering_ between elements of the input.
#'
#' If `NULL`, defaults to `"error"`.
#'
#' If `getOption("clock.strict")` is `TRUE`, `nonexistent` must be supplied
#' and cannot be `NULL`. This is a convenient way to make production code
#' robust to nonexistent times.
#'
#' @param ambiguous `[character / zoned_time / POSIXct / list(2) / NULL]`
#'
#' One of the following ambiguous time resolution strategies, allowed to be
#' either length 1, or the same length as the input:
#'
#' - `"earliest"`: Of the two possible times, choose the earliest one.
#'
#' - `"latest"`: Of the two possible times, choose the latest one.
#'
#' - `"NA"`: Replace ambiguous times with `NA`.
#'
#' - `"error"`: Error on ambiguous times.
#'
#' Alternatively, `ambiguous` is allowed to be a zoned_time (or POSIXct) that
#' is either length 1, or the same length as the input. If an ambiguous time
#' is encountered, the zoned_time is consulted. If the zoned_time corresponds
#' to a naive_time that is also ambiguous _and_ uses the same daylight saving
#' time transition point as the original ambiguous time, then the offset of
#' the zoned_time is used to resolve the ambiguity. If the ambiguity cannot be
#' resolved by consulting the zoned_time, then this method falls back to
#' `NULL`.
#'
#' Finally, `ambiguous` is allowed to be a list of size 2, where the first
#' element of the list is a zoned_time (as described above), and the second
#' element of the list is an ambiguous time resolution strategy to use when
#' the ambiguous time cannot be resolved by consulting the zoned_time.
#' Specifying a zoned_time on its own is identical to `list(<zoned_time>,
#' NULL)`.
#'
#' If `NULL`, defaults to `"error"`.
#'
#' If `getOption("clock.strict")` is `TRUE`, `ambiguous` must be supplied and
#' cannot be `NULL`. Additionally, `ambiguous` cannot be specified as a
#' zoned_time on its own, as this implies `NULL` for ambiguous times that the
#' zoned_time cannot resolve. Instead, it must be specified as a list
#' alongside an ambiguous time resolution strategy as described above. This is
#' a convenient way to make production code robust to ambiguous times.
#'
#' @return A zoned-time vector.
#'
#' @name as-zoned-time-naive-time
#' @export
#' @examples
#' library(magrittr)
#'
#' x <- as_naive_time(year_month_day(2019, 1, 1))
#'
#' # Converting a naive-time to a zoned-time generally retains the
#' # printed time, while changing the underlying duration.
#' as_zoned_time(x, "America/New_York")
#' as_zoned_time(x, "America/Los_Angeles")
#'
#' # ---------------------------------------------------------------------------
#' # Nonexistent time:
#'
#' new_york <- "America/New_York"
#'
#' # There was a daylight saving gap in the America/New_York time zone on
#' # 2020-03-08 01:59:59 -> 03:00:00, which means that one of these
#' # naive-times don't exist in that time zone. By default, attempting to
#' # convert it to a zoned time will result in an error.
#' nonexistent_time <- year_month_day(2020, 03, 08, c(02, 03), c(45, 30), 00)
#' nonexistent_time <- as_naive_time(nonexistent_time)
#' try(as_zoned_time(nonexistent_time, new_york))
#'
#' # Resolve this by specifying a nonexistent time resolution strategy
#' as_zoned_time(nonexistent_time, new_york, nonexistent = "roll-forward")
#' as_zoned_time(nonexistent_time, new_york, nonexistent = "roll-backward")
#'
#' # Note that rolling backwards will choose the last possible moment in
#' # time at the current precision of the input
#' nonexistent_nanotime <- time_point_cast(nonexistent_time, "nanosecond")
#' nonexistent_nanotime
#' as_zoned_time(nonexistent_nanotime, new_york, nonexistent = "roll-backward")
#'
#' # A word of caution - Shifting does not guarantee that the relative ordering
#' # of the input is maintained
#' shifted <- as_zoned_time(
#' nonexistent_time,
#' new_york,
#' nonexistent = "shift-forward"
#' )
#' shifted
#'
#' # 02:45:00 < 03:30:00
#' nonexistent_time[1] < nonexistent_time[2]
#' # 03:45:00 > 03:30:00 (relative ordering is lost)
#' shifted[1] < shifted[2]
#'
#' # ---------------------------------------------------------------------------
#' # Ambiguous time:
#'
#' new_york <- "America/New_York"
#'
#' # There was a daylight saving time fallback in the America/New_York time
#' # zone on 2020-11-01 01:59:59 EDT -> 2020-11-01 01:00:00 EST, resulting
#' # in two 1 o'clock hours. This means that the following naive time is
#' # ambiguous since we don't know which of the two 1 o'clocks it belongs to.
#' # By default, attempting to convert it to a zoned time will result in an
#' # error.
#' ambiguous_time <- year_month_day(2020, 11, 01, 01, 30, 00)
#' ambiguous_time <- as_naive_time(ambiguous_time)
#' try(as_zoned_time(ambiguous_time, new_york))
#'
#' # Resolve this by specifying an ambiguous time resolution strategy
#' earliest <- as_zoned_time(ambiguous_time, new_york, ambiguous = "earliest")
#' latest <- as_zoned_time(ambiguous_time, new_york, ambiguous = "latest")
#' na <- as_zoned_time(ambiguous_time, new_york, ambiguous = "NA")
#' earliest
#' latest
#' na
#'
#' # Now assume that you were given the following zoned-times, i.e.,
#' # you didn't build them from scratch so you already know their otherwise
#' # ambiguous offsets
#' x <- c(earliest, latest)
#' x
#'
#' # To set the seconds to 5 in both, you might try:
#' x_naive <- x %>%
#' as_naive_time() %>%
#' as_year_month_day() %>%
#' set_second(5) %>%
#' as_naive_time()
#'
#' x_naive
#'
#' # But this fails because you've "lost" the information about which
#' # offsets these ambiguous times started in
#' try(as_zoned_time(x_naive, zoned_time_zone(x)))
#'
#' # To get around this, you can use that information by specifying
#' # `ambiguous = x`, which will use the offset from `x` to resolve the
#' # ambiguity in `x_naive` as long as `x` is also an ambiguous time with the
#' # same daylight saving time transition point as `x_naive` (i.e. here
#' # everything has a transition point of `"2020-11-01 01:00:00 EST"`).
#' as_zoned_time(x_naive, zoned_time_zone(x), ambiguous = x)
#'
#' # Say you added one more time to `x` that would not be considered ambiguous
#' # in naive-time
#' x <- c(x, as_zoned_time(as_sys_time(latest) + 3600, zoned_time_zone(latest)))
#' x
#'
#' # Imagine you want to floor this vector to a multiple of 2 hours, with
#' # an origin of 1am that day. You can do this by subtracting the origin,
#' # flooring, then adding it back
#' origin <- year_month_day(2019, 11, 01, 01, 00, 00) %>%
#' as_naive_time() %>%
#' as_duration()
#'
#' x_naive <- x %>%
#' as_naive_time() %>%
#' add_seconds(-origin) %>%
#' time_point_floor("hour", n = 2) %>%
#' add_seconds(origin)
#'
#' x_naive
#'
#' # You again have ambiguous naive-time points, so you might try using
#' # `ambiguous = x`. It looks like this took care of the first two problems,
#' # but we have an issue at location 3.
#' try(as_zoned_time(x_naive, zoned_time_zone(x), ambiguous = x))
#'
#' # When we floored from 02:30:00 -> 01:00:00, we went from being
#' # unambiguous -> ambiguous. In clock, this is something you must handle
#' # explicitly, and cannot be handled by using information from `x`. You can
#' # handle this while still retaining the behavior for the other two
#' # time points that were ambiguous before and after the floor by passing a
#' # list containing `x` and an ambiguous time resolution strategy to use
#' # when information from `x` can't resolve ambiguities:
#' as_zoned_time(x_naive, zoned_time_zone(x), ambiguous = list(x, "latest"))
as_zoned_time.clock_naive_time <- function(
x,
zone,
...,
nonexistent = NULL,
ambiguous = NULL
) {
check_dots_empty0(...)
check_zone(zone)
# Promote to at least seconds precision for `zoned_time`
ptype <- vec_ptype2(x, clock_empty_naive_time_second, y_arg = "")
x <- vec_cast(x, ptype)
size <- vec_size(x)
precision <- time_point_precision_attribute(x)
names <- clock_rcrd_names(x)
nonexistent <- check_nonexistent(nonexistent, size)
info <- check_ambiguous(ambiguous, size, zone)
method <- info$method
if (identical(method, "string")) {
ambiguous <- info$ambiguous
fields <- as_zoned_sys_time_from_naive_time_cpp(
x,
precision,
zone,
nonexistent,
ambiguous,
current_env()
)
} else if (identical(method, "reference")) {
reference <- info$reference
ambiguous <- info$ambiguous
fields <- as_zoned_sys_time_from_naive_time_with_reference_cpp(
x,
precision,
zone,
nonexistent,
ambiguous,
reference,
current_env()
)
} else {
abort("Internal error: Unknown ambiguous handling method.")
}
new_zoned_time_from_fields(fields, precision, zone, names)
}
check_nonexistent <- function(nonexistent, size, ..., call = caller_env()) {
check_dots_empty0(...)
nonexistent <- check_nonexistent_strict(nonexistent, call = call)
nonexistent_size <- vec_size(nonexistent)
if (nonexistent_size != 1L && nonexistent_size != size) {
cli::cli_abort(
"{.arg nonexistent} must have length 1 or {size}.",
call = call
)
}
check_character(nonexistent, allow_null = TRUE, call = call)
nonexistent
}
check_ambiguous <- function(ambiguous, size, zone, ..., call = caller_env()) {
check_dots_empty0(...)
if (is_null(ambiguous)) {
ambiguous <- check_ambiguous_strict(ambiguous, call = call)
return(list(method = "string", ambiguous = ambiguous))
}
if (is_character(ambiguous)) {
ambiguous <- check_ambiguous_chr(ambiguous, size, call = call)
return(list(method = "string", ambiguous = ambiguous))
}
if (is_zoned_time(ambiguous) || inherits(ambiguous, "POSIXt")) {
# Implied `NULL`, to be validated by `check_ambiguous_strict()`
ambiguous <- list(ambiguous, NULL)
}
if (is_list(ambiguous)) {
result <- check_ambiguous_list(ambiguous, size, zone, call = call)
reference <- result$reference
ambiguous <- result$ambiguous
return(
list(method = "reference", reference = reference, ambiguous = ambiguous)
)
}
cli::cli_abort(
"{.arg ambiguous} must be a character vector, a zoned-time, a POSIXct, or a list, not {.obj_type_friendly {ambiguous}}.",
call = call
)
}
check_ambiguous_chr <- function(ambiguous, size, call) {
ambiguous_size <- vec_size(ambiguous)
if (ambiguous_size != 1L && ambiguous_size != size) {
cli::cli_abort(
"{.arg ambiguous} must have length 1 or {size}.",
call = call
)
}
ambiguous
}
check_ambiguous_zoned <- function(ambiguous, size, zone, call) {
# POSIXt -> zoned_time
reference <- as_zoned_time(ambiguous)
reference_size <- vec_size(reference)
reference_zone <- zoned_time_zone_attribute(reference)
if (reference_size != 1L && reference_size != size) {
cli::cli_abort(
"A zoned-time or POSIXct {.arg ambiguous} must have length 1 or {size}.",
call = call
)
}
if (reference_zone != zone) {
cli::cli_abort(
"A zoned-time or POSIXct {.arg ambiguous} must have the same zone as {.arg zone}.",
call = call
)
}
# Force seconds precision to avoid the need for C++ templating
sys_time <- as_sys_time(reference)
sys_time <- time_point_floor(sys_time, "second")
reference <- as_zoned_time(sys_time, reference_zone)
reference
}
check_ambiguous_list <- function(ambiguous, size, zone, call) {
if (length(ambiguous) != 2L) {
cli::cli_abort("A list {.arg ambiguous} must have length 2.", call = call)
}
reference <- ambiguous[[1]]
if (!is_zoned_time(reference) && !inherits(reference, "POSIXt")) {
cli::cli_abort(
"The first element of a list {.arg ambiguous} must be a zoned-time or POSIXt.",
call = call
)
}
reference <- check_ambiguous_zoned(reference, size, zone, call = call)
ambiguous <- ambiguous[[2]]
if (is_null(ambiguous)) {
ambiguous <- check_ambiguous_strict(ambiguous, call = call)
}
if (!is_character(ambiguous)) {
cli::cli_abort(
"The second element of a list {.arg ambiguous} must be a character vector, or `NULL`.",
call = call
)
}
ambiguous <- check_ambiguous_chr(ambiguous, size, call = call)
list(reference = reference, ambiguous = ambiguous)
}
#' @export
as.character.clock_naive_time <- function(x, ...) {
format(x)
}
# ------------------------------------------------------------------------------
#' Info: naive-time
#'
#' @description
#' `naive_time_info()` retrieves a set of low-level information generally not
#' required for most date-time manipulations. It is used implicitly
#' by `as_zoned_time()` when converting from a naive-time.
#'
#' It returns a data frame with the following columns:
#'
#' - `type`: A character vector containing one of:
#'
#' - `"unique"`: The naive-time maps uniquely to a zoned-time that can be
#' created with `zone`.
#'
#' - `"nonexistent"`: The naive-time does not exist as a zoned-time that can
#' be created with `zone`.
#'
#' - `"ambiguous"`: The naive-time exists twice as a zoned-time that can be
#' created with `zone`.
#'
#' - `first`: A [sys_time_info()] data frame.
#'
#' - `second`: A [sys_time_info()] data frame.
#'
#' ## type == "unique"
#'
#' - `first` will be filled out with sys-info representing daylight saving time
#' information for that time point in `zone`.
#'
#' - `second` will contain only `NA` values, as there is no ambiguity to
#' represent information for.
#'
#' ## type == "nonexistent"
#'
#' - `first` will be filled out with the sys-info that ends just prior to `x`.
#'
#' - `second` will be filled out with the sys-info that begins just after `x`.
#'
#' ## type == "ambiguous"
#'
#' - `first` will be filled out with the sys-info that ends just after `x`.
#'
#' - `second` will be filled out with the sys-info that starts just before `x`.
#'
#' @details
#' If the tibble package is installed, it is recommended to convert the output
#' to a tibble with `as_tibble()`, as that will print the df-cols much nicer.
#'
#' @param x `[clock_naive_time]`
#'
#' A naive-time.
#'
#' @param zone `[character]`
#'
#' A valid time zone name.
#'
#' Unlike most functions in clock, in `naive_time_info()` `zone` is vectorized
#' and is recycled against `x`.
#'
#' @return A data frame of low level information.
#'
#' @export
#' @examples
#' library(vctrs)
#'
#' x <- year_month_day(1970, 04, 26, 02, 30, 00)
#' x <- as_naive_time(x)
#'
#' # Maps uniquely to a time in London
#' naive_time_info(x, "Europe/London")
#'
#' # This naive-time never existed in New York!
#' # A DST gap jumped the time from 01:59:59 -> 03:00:00,
#' # skipping the 2 o'clock hour
#' zone <- "America/New_York"
#' info <- naive_time_info(x, zone)
#' info
#'
#' # You can recreate various `nonexistent` strategies with this info
#' as_zoned_time(x, zone, nonexistent = "roll-forward")
#' as_zoned_time(info$first$end, zone)
#'
#' as_zoned_time(x, zone, nonexistent = "roll-backward")
#' as_zoned_time(info$first$end - 1, zone)
#'
#' as_zoned_time(x, zone, nonexistent = "shift-forward")
#' as_zoned_time(as_sys_time(x) - info$first$offset, zone)
#'
#' as_zoned_time(x, zone, nonexistent = "shift-backward")
#' as_zoned_time(as_sys_time(x) - info$second$offset, zone)
#'
#' # ---------------------------------------------------------------------------
#' # Normalizing to UTC
#'
#' # Imagine you had the following printed times, and knowledge that they
#' # are to be interpreted as in the corresponding time zones
#' df <- data_frame(
#' x = c("2020-01-05 02:30:00", "2020-06-03 12:20:05"),
#' zone = c("America/Los_Angeles", "Europe/London")
#' )
#'
#' # The times are assumed to be naive-times, i.e. if you lived in the `zone`
#' # at the moment the time was recorded, then you would have seen that time
#' # printed on the clock. Currently, these are strings. To convert them to
#' # a time based type, you'll have to acknowledge that R only lets you have
#' # 1 time zone in a vector of date-times at a time. So you'll need to
#' # normalize these naive-times. The easiest thing to normalize them to
#' # is UTC.
#' df$naive <- naive_time_parse(df$x)
#'
#' # Get info about the naive times using a vector of zones
#' info <- naive_time_info(df$naive, df$zone)
#' info
#'
#' # We'll assume that some system generated these naive-times with no
#' # chance of them ever being nonexistent or ambiguous. So now all we have
#' # to do is use the offset to convert the naive-time to a sys-time. The
#' # relationship used is:
#' # offset = naive_time - sys_time
#' df$sys <- as_sys_time(df$naive) - info$first$offset
#' df
#'
#' # At this point, both times are in UTC. From here, you can convert them
#' # both to either America/Los_Angeles or Europe/London as required.
#' as_zoned_time(df$sys, "America/Los_Angeles")
#' as_zoned_time(df$sys, "Europe/London")
naive_time_info <- function(x, zone) {
check_naive_time(x)
check_character(zone)
precision <- time_point_precision_attribute(x)
# Recycle `x` to the common size. `zone` is recycled internally as required,
# which is more efficient than reloading the time zone repeatedly.
size <- vec_size_common(x = x, zone = zone)
x <- vec_recycle(x, size)
fields <- naive_time_info_cpp(x, precision, zone)
new_naive_time_info_from_fields(fields)
}
new_naive_time_info_from_fields <- function(fields) {
fields[["first"]] <- new_sys_time_info_from_fields(fields[["first"]])
fields[["second"]] <- new_sys_time_info_from_fields(fields[["second"]])
new_data_frame(fields)
}
# ------------------------------------------------------------------------------
#' @export
vec_ptype_full.clock_naive_time <- function(x, ...) {
time_point_ptype(x, type = "full")
}
#' @export
vec_ptype_abbr.clock_naive_time <- function(x, ...) {
time_point_ptype(x, type = "abbr")
}
# ------------------------------------------------------------------------------
#' @export
vec_ptype.clock_naive_time <- function(x, ...) {
switch(
time_point_precision_attribute(x) + 1L,
abort("Internal error: Invalid precision"),
abort("Internal error: Invalid precision"),
abort("Internal error: Invalid precision"),
abort("Internal error: Invalid precision"),
clock_empty_naive_time_day,
clock_empty_naive_time_hour,
clock_empty_naive_time_minute,
clock_empty_naive_time_second,
clock_empty_naive_time_millisecond,
clock_empty_naive_time_microsecond,
clock_empty_naive_time_nanosecond,
abort("Internal error: Invalid precision.")
)
}
#' @export
vec_ptype2.clock_naive_time.clock_naive_time <- function(x, y, ...) {
ptype2_time_point_and_time_point(x, y, ...)
}
#' @export
vec_cast.clock_naive_time.clock_naive_time <- function(x, to, ...) {
cast_time_point_to_time_point(x, to, ...)
}
# ------------------------------------------------------------------------------
#' @rdname clock-arith
#' @method vec_arith clock_naive_time
#' @export
vec_arith.clock_naive_time <- function(op, x, y, ...) {
UseMethod("vec_arith.clock_naive_time", y)
}
#' @method vec_arith.clock_naive_time MISSING
#' @export
vec_arith.clock_naive_time.MISSING <- function(op, x, y, ...) {
arith_time_point_and_missing(op, x, y, ...)
}
#' @method vec_arith.clock_naive_time clock_naive_time
#' @export
vec_arith.clock_naive_time.clock_naive_time <- function(op, x, y, ...) {
arith_time_point_and_time_point(op, x, y, ...)
}
#' @method vec_arith.clock_naive_time clock_duration
#' @export
vec_arith.clock_naive_time.clock_duration <- function(op, x, y, ...) {
arith_time_point_and_duration(op, x, y, ...)
}
#' @method vec_arith.clock_duration clock_naive_time
#' @export
vec_arith.clock_duration.clock_naive_time <- function(op, x, y, ...) {
arith_duration_and_time_point(op, x, y, ...)
}
#' @method vec_arith.clock_naive_time numeric
#' @export
vec_arith.clock_naive_time.numeric <- function(op, x, y, ...) {
arith_time_point_and_numeric(op, x, y, ...)
}
#' @method vec_arith.numeric clock_naive_time
#' @export
vec_arith.numeric.clock_naive_time <- function(op, x, y, ...) {
arith_numeric_and_time_point(op, x, y, ...)
}
# ------------------------------------------------------------------------------
clock_init_naive_time_utils <- function(env) {
day <- as_naive_time(year_month_day(integer(), integer(), integer()))
assign("clock_empty_naive_time_day", day, envir = env)
assign(
"clock_empty_naive_time_hour",
time_point_cast(day, "hour"),
envir = env
)
assign(
"clock_empty_naive_time_minute",
time_point_cast(day, "minute"),
envir = env
)
assign(
"clock_empty_naive_time_second",
time_point_cast(day, "second"),
envir = env
)
assign(
"clock_empty_naive_time_millisecond",
time_point_cast(day, "millisecond"),
envir = env
)
assign(
"clock_empty_naive_time_microsecond",
time_point_cast(day, "microsecond"),
envir = env
)
assign(
"clock_empty_naive_time_nanosecond",
time_point_cast(day, "nanosecond"),
envir = env
)
invisible(NULL)
}
|