1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
### function defining the EM algorithm for the CFR estimates
##' A function to estimate the relative case fatality ratio when reporting rates
##' are time-varying and deaths are lagged because of survival time.
##'
##' This function implements an EM algorithm to estimate the relative case
##' fatality ratio between two groups when reporting rates are time-varying and
##' deaths are lagged because of survival time.
##' @usage EMforCFR(assumed.nu, alpha.start.values, full.data, max.iter = 50,
##' verb = FALSE, tol = 1e-10, SEM.var = TRUE)
##'
##' @param assumed.nu a vector of probabilities corresponding to the survival
##' distribution, i.e. nu[i]=Pr(surviving i days | fatal case)
##' @param alpha.start.values a vector starting values for the reporting rate
##' parameter of the GLM model. This must have length which corresponds to one
##' less than the number of unique integer values of full.dat[,"new.times"].
##' @param full.data A matrix of observed data. See description below.
##' @param max.iter The maximum number of iterations for the EM algorithm and
##' the accompanying SEM algorithm (if used).
##' @param verb An indicator for whether the function should print results as it
##' runs.
##' @param tol A tolerance to use to test for convergence of the EM algorithm.
##' @param SEM.var If TRUE, the SEM algorithm will be run in addition to the EM
##' algorithm to calculate the variance of the parameter estimates.
##'
##' @details The data matrix full.data must have the following columns:
##' \describe{ \item{grp}{a 1 or a 2 indicating which of the two groups, j,
##' the observation is for.} \item{new.times}{an integer value representing
##' the time, t, of observation.} \item{R}{the count of recovered cases with
##' onset at time t in group j.} \item{D}{the count of deaths which occurred at
##' time t in groupo j (note that these deaths did not have disease onset at
##' time t but rather died at time t).} \item{N}{the total cases at t, j, or
##' the sum of R and D columns.} }
##'
##' @return A list with the following elements \describe{ \item{naive.rel.cfr
##' }{the naive estimate of the relative case fatality ratio}
##' \item{glm.rel.cfr }{the reporting-rate-adjusted estimate of the relative
##' case fatality ratio} \item{EM.rel.cfr }{the lag-adjusted estimate of the
##' relative case fatality ratio} \item{EM.re.cfr.var }{the variance for the
##' log-scale lag-adjusted estimator taken from the final M-step}
##' \item{EM.rel.cfr.var.SEM }{ the Supplemented EM algorithm variance for the
##' log-scale lag-adjusted estimator} \item{EM.rel.cfr.chain }{a vector of the
##' EM algorithm iterates of the lag-adjusted relative CFR estimates}
##' \item{EMiter}{the number of iterations needed for the EM algorithm to
##' converge} \item{EMconv}{indicator for convergence of the EM algorithm. 0
##' indicates all parameters converged within max.iter iterations. 1 indicates
##' that the estimate of the relative case fatality ratio converged but other
##' did not. 2 indicates that the relative case fatality ratio did not
##' converge.} \item{SEMconv}{indicator for convergence of SEM algorithm.
##' Same scheme as EMconv.} \item{ests}{ the coefficient estimates for the
##' model } \item{ests.chain}{ a matrix with all of the coefficient estimates,
##' at each EM iteration} \item{DM}{the DM matrix from the SEM algorithm}
##' \item{DMiter}{a vector showing how many iterations it took for the
##' variance component to converge in the SEM algorithm} }
##' @examples
##' ## This is code from the CFR vignette provided in the documentation.
##'
##' data(simulated.outbreak.deaths)
##' min.cases <- 10
##' N.1 <- simulated.outbreak.deaths[1:60, "N"]
##' N.2 <- simulated.outbreak.deaths[61:120, "N"]
##' first.t <- min(which(N.1 > min.cases & N.2 > min.cases))
##' last.t <- max(which(N.1 > min.cases & N.2 > min.cases))
##' idx.for.Estep <- first.t:last.t
##' new.times <- 1:length(idx.for.Estep)
##' simulated.outbreak.deaths <- cbind(simulated.outbreak.deaths, new.times = NA)
##' simulated.outbreak.deaths[c(idx.for.Estep, idx.for.Estep + 60), "new.times"] <- rep(new.times, + 2)
##' assumed.nu = c(0, 0.3, 0.4, 0.3)
##' alpha.start <- rep(0, 22)
##'
##' ## caution! this next line may take several minutes (5-10, depanding on
##' ## the speed of your machine) to run.
##' \dontrun{cfr.ests <- EMforCFR(assumed.nu = assumed.nu,
##' alpha.start.values = alpha.start,
##' full.data = simulated.outbreak.deaths,
##' verb = FALSE,
##' SEM.var = TRUE,
##' max.iter = 500,
##' tol = 1e-05)}
##' @keywords coarse data
##' @keywords incomplete data
##' @keywords case fatality ratio
##' @keywords infectious disease
##' @export
EMforCFR <- function(assumed.nu, alpha.start.values, full.data,
max.iter=50, verb=FALSE, tol=1e-10, SEM.var=TRUE){
## full.data is the data output from the observe.epidemic() function
## with a column specifying the rows to be used for analysis
#######################################
## calculate naive and GLM estimates ##
#######################################
D.1 <- sum(full.data[full.data[,"grp"]==1&!is.na(full.data[,"new.times"]),"D"])
D.2 <- sum(full.data[full.data[,"grp"]==2&!is.na(full.data[,"new.times"]),"D"])
N.1 <- sum(full.data[full.data[,"grp"]==1&!is.na(full.data[,"new.times"]),"N"])
N.2 <- sum(full.data[full.data[,"grp"]==2&!is.na(full.data[,"new.times"]),"N"])
naive.rel.cfr <- sum(D.2)/sum(N.2)/(sum(D.1)/sum(N.1))
dat <- data.frame(full.data)
unadj.glm.fit <- glm(dat[,"D"] ~ factor(dat[,"new.times"]) + factor(dat[,"grp"]),
offset=log(dat[,"N"]), family=poisson)
glm.rel.cfr <- exp(coef(unadj.glm.fit))[length(coef(unadj.glm.fit))]
#########################
## set up EM algorithm ##
#########################
proposed.rel.cfr.chain <- rep(0, max.iter)
n.params <- max(dat[,"new.times"], na.rm=TRUE)+1
phi.chain <- matrix(nrow=n.params, ncol=max.iter)
nlag <- length(assumed.nu)
## convergence codes:
## 0 = all parameters converge
## 1 = rCFR converges, but some other parameters do not
## 2 = rCFR does not converge
EMconv <- SEMconv <- 0
## looping variables
eps <- 1
j <- 0
alpha <- alpha.start.values
while(eps>tol){
j <- j+1
############
## E STEP ##
############
dat <- run.Estep(alpha,full.data=full.data,
nlag=nlag, assumed.nu=assumed.nu)
############
## M STEP ##
############
maxLik <- run.Mstep(dat)
phi.chain[,j] <- maxLik$phi
alpha <- phi.chain[2:(n.params-1),j]
proposed.rel.cfr.chain[j] <- exp(phi.chain[n.params,j])
## check convergence
if(j>1) eps <- max((phi.chain[,j]-phi.chain[,j-1])^2)
if(j==max.iter) {
## message("*** WARNING: EM agorithm didn't converge ***")
if((phi.chain[n.params,j]-phi.chain[n.params,j-1])^2 < eps){
EMconv <- 1
} else {
EMconv <- 2
}
break
}
}
var.joint <- maxLik$Var
phi <- phi.chain[,j]
proposed.rel.cfr <- proposed.rel.cfr.chain[j]
EMiter <- j
if(verb) {
print(paste("naive estimator =", round(naive.rel.cfr, 3)))
print(paste("GLM estimate unadjusted for lags =", round(glm.rel.cfr, 3)))
print(paste(EMiter, "iterations for EM convergence"))
}
if(SEM.var){
DM.out <- SEM.variance(full.data=full.data, dat, phi, max.iter, tol, nlag=nlag, alpha.start.values, assumed.nu=assumed.nu)
DM <- DM.out$DM
DMiter <- DM.out$DMiter
if(length(DM.out$loop.idx)>0) {
loop.idx <- DM.out$loop.idx
var.joint <- var.joint[-loop.idx,-loop.idx]
}
## set SEM convergence codes
if(any(DMiter==0)) {
if(DMiter[length(DMiter)]==0) {
SEMconv <- 2
} else { SEMconv <- 1 }
}
## calculate CFR variance if it converged
if(SEMconv<2){
variance.SEM <- var.joint +
var.joint %*% DM %*% solve(diag(1, ncol(DM))-DM)
proposed.rel.cfr.var.SEM <- variance.SEM[nrow(DM), nrow(DM)]
if(proposed.rel.cfr.var.SEM<0) {
proposed.rel.cfr.var.SEM <- NA
SEMconv <- 2
}
} else { proposed.rel.cfr.var.SEM <- NA }
if(verb){
print("Estimate with SEM")
print(paste("proposed CFR =", round(proposed.rel.cfr, 3),
"; 95% CI (",
round(exp(log(proposed.rel.cfr)
-2*sqrt(proposed.rel.cfr.var.SEM)),3),
",",
round(exp(log(proposed.rel.cfr)
+2*sqrt(proposed.rel.cfr.var.SEM)),3),
")"))
if(any(DM.out$DMiter==0)) {
print("non-convergent DM indices:")
print(which(DM.out$DMiter==0))
}
}
} else {
SEMconv <- NA
DM <- NULL
DMiter <- NULL
proposed.rel.cfr.var.SEM <- NULL
}
## ##############
## OUTPUT LIST ##
## ##############
out <- list(naive.rel.cfr=naive.rel.cfr,
glm.rel.cfr=glm.rel.cfr,
EM.rel.cfr=proposed.rel.cfr,
EM.rel.cfr.var=var.joint[nrow(var.joint), nrow(var.joint)],
EM.rel.cfr.var.SEM = proposed.rel.cfr.var.SEM,
EM.rel.cfr.chain=proposed.rel.cfr.chain,
EMiter=EMiter,
EMconv=EMconv,
SEMconv=SEMconv,
ests=phi,
ests.chain.EM=phi.chain,
DM=DM,
DMiter=DMiter)
if(verb) {
print("Estimate with just GLM variance")
print(paste("proposed CFR =", round(proposed.rel.cfr, 3),
"; 95% CI (",
round(exp(log(proposed.rel.cfr)
-2*sqrt(out$EM.rel.cfr.var)),3),
",",
round(exp(log(proposed.rel.cfr)
+2*sqrt(out$EM.rel.cfr.var)),3),
")"))
}
return(out)
}
## This function is meant to be run only through the function EMforCFR()
## and is used to calculate the variance via the Supplemented EM
## algorithm (see Meng and Rubin, 1991)
## params:
## \item{full.data}{ A matrix of observed data. See description in EMforCFR helpfile.}
## \item{dat}{A data frame.}
## \item{phi}{ A vector of fitted parameters from the final EM iteration.}
## \item{max.iter}{ The maximum number of iterations for SEM algorithm. }
## \item{tol}{ A tolerance to use to test for convergence of the EM algorithm. }
## \item{nlag}{ The number of time units for lagged data. Corresponds to length(assumed.nu).}
## \item{alpha.start.values}{ a vector starting values for the reporting rate parameter of the GLM model. This must have length which corresponds to one less than the number of unique integer values of full.dat[,"new.times"].}
## \item{assumed.nu}{ a vector of probabilities corresponding to the survival distribution, i.e. nu[i]=Pr(surviving i days | fatal case) }
## returned list:
## \item{DM}{The estimate of the variance-covariance matrix for the model parameters. Only converged rows are returned.}
## \item{DMiter}{A vector whose ith entry is the number of iterations needed for convergence of the ith row of the DM matrix.}
## \item{loop.idx}{If not NULL, the values correspond to the original indices of DM which have been omitted because of lack of convergence.}
SEM.variance <- function(full.data, dat, phi, max.iter, tol, nlag,
alpha.start.values, assumed.nu){
## algorithm parameters
eps <- 1
iter <- 0
phi.hat <- phi ## using phi from notation in Bayesian Data Analysis (Gelman, p323)
phi0 <- c(1, alpha.start.values, 1) ## the starting values for the parameters: c(beta0, alpha2-T, gamma2)
n.params <- length(phi0)
## sequence of matrices which will converge to DM
Rt <- array(dim=c(n.params, n.params, max.iter))
DM <- matrix(nrow=n.params, ncol=n.params)
DMiter <- rep(0, n.params)
## sequence of coefficient estimates
phi.t <- matrix(nrow=n.params, ncol=max.iter+1)
alpha.t <- alpha.start.values
phi.t[,1] <- phi0
loop.idx <- 1:n.params
while(length(loop.idx)>0) {
iter <- iter + 1
##THIS EM CALCULATES PHI^(T+1)
## E step
dat <- run.Estep(alpha.t, nlag=nlag,
full.data=full.data, assumed.nu=assumed.nu)
## M step
phi.t[,iter+1] <- run.Mstep(dat)$phi
## generate Rt given phi.t
for(i in loop.idx){
## defining phi.tmp here as phi^t(i) from Gelman
phi.t.i <- phi.hat
phi.t.i[i] <- phi.t[i,iter]
alpha.t.i <- phi.t.i[2:(n.params-1)]
## E step
dat <- run.Estep(alpha.t.i, nlag=nlag,
full.data=full.data, assumed.nu=assumed.nu)
## M step
phi.tplus1.i <- run.Mstep(dat)$phi
## fis the ith row of the current Rt matrix
Rt[i,,iter] <- (phi.tplus1.i-phi.hat)/(phi.t[i,iter]-phi.hat[i])
if(iter==1) next
if(all((Rt[i,,iter]-Rt[i,,iter-1])^2 < sqrt(tol))){
loop.idx <- loop.idx[-which(loop.idx==i)]
DM[i,] <- Rt[i,,iter]
DMiter[i] <- iter
}
}
## renew alpha.t
alpha.tplus1 <- phi.t[2:(n.params-1), iter+1]
alpha.t <- alpha.tplus1
if(iter == max.iter) break("maximum iterations reached")
}
if(length(loop.idx)>0) DM <- DM[-loop.idx, -loop.idx]
DM.out <- list(DM=DM, DMiter=DMiter, loop.idx=loop.idx)
return(DM.out)
}
## E-step of the EM algorithm.
# \arguments{
# \item{alpha}{Current estimates of the alpha parameters from the GLM model.}
# \item{full.data}{ A matrix of observed data. See description in EMforCFR helpfile.}
# \item{nlag}{ The number of time units for lagged data. Corresponds to length(assumed.nu).}
# \item{assumed.nu}{ a vector of probabilities corresponding to the survival distribution, i.e. nu[i]=Pr(surviving i days | fatal case) }
# }
# \value{ A data matrix with the same format as full.data from the EMforCFR() documentation.
# }
run.Estep <- function(alpha, full.data, nlag, assumed.nu){
## storage for reconstructed deaths
n.times <- nrow(full.data)/2
idx.to.reconstruct <- which(full.data[,"grp"]==1 &!is.na(full.data[,"new.times"]))
times.to.reconstruct <- full.data[idx.to.reconstruct,"time"]
Dhat.1 <- Dhat.2 <- rep(0, n.times)
## define the data
N.1 <- full.data[1:n.times,"N"]
N.2 <- full.data[(n.times+1):(2*n.times),"N"]
D.1 <- full.data[1:n.times,"D"]
D.2 <- full.data[(n.times+1):(2*n.times),"D"]
## set the alpha coefficients
alpha.long <- rep(0, n.times)
alpha.long[times.to.reconstruct[-1]] <- alpha
alpha.long[(max(times.to.reconstruct)+1):n.times] <- alpha[length(alpha)]
## ########
## loops for calculating expected value of the deaths
for(t in times.to.reconstruct) {
denom.1 <- denom.2 <- rep(0, nlag)
for(i in 1:nlag){
N.idx <- (t+i-1):(t+i-nlag)
nu.idx <- 1:length(N.idx)
## group 1
denom.1[i] <- sum(assumed.nu[nu.idx]*N.1[N.idx]*exp(alpha.long[N.idx]))
## group 2
denom.2[i] <- sum(assumed.nu[nu.idx]*N.2[N.idx]*exp(alpha.long[N.idx]))
}
## exclude 0s from denominator
denom.1[denom.1==0] <- NA
denom.2[denom.2==0] <- NA
## sum them up
D.idx <- (t+1):(t+nlag)
Dhat.1[t] <- N.1[t] * exp(alpha.long[t]) * sum(D.1[D.idx] * assumed.nu[nu.idx]/denom.1, na.rm=TRUE)
Dhat.2[t] <- N.2[t] * exp(alpha.long[t]) * sum(D.2[D.idx] * assumed.nu[nu.idx]/denom.2, na.rm=TRUE)
}
dat <- cbind(Dhat=c(Dhat.1, Dhat.2),
new.times=full.data[,"new.times"],
grp=full.data[,"grp"],
N=full.data[,"N"])
return(dat)
}
## the M-step
# \arguments{
# \item{dat}{data matrix passed from EMforCFR().}
# }
# \value{ A list with two components
# \item{phi }{fitted vector of parameters}
# \item{Var }{variance-covariance matrix from the fitted model}
# }
run.Mstep <- function(dat){
subset <- which(dat[,"N"]>0)
fit <- glm(dat[,"Dhat"] ~ factor(dat[,"new.times"]) + factor(dat[,"grp"]),
offset=log(dat[,"N"]),family=poisson, subset=subset)
phi <- coef(fit)
out <- list(phi=phi, Var=vcov(fit))
return(out)
}
|