File: EMforCFR.Rd

package info (click to toggle)
r-cran-coarsedatatools 0.6-6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 328 kB
  • sloc: makefile: 2
file content (103 lines) | stat: -rw-r--r-- 4,777 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/CFR_estimation.R
\name{EMforCFR}
\alias{EMforCFR}
\title{A function to estimate the relative case fatality ratio when reporting rates
are time-varying and deaths are lagged because of survival time.}
\usage{
EMforCFR(assumed.nu, alpha.start.values, full.data, max.iter = 50, 
  verb = FALSE, tol = 1e-10, SEM.var = TRUE)
}
\arguments{
\item{assumed.nu}{a vector of probabilities corresponding to the survival
distribution, i.e. nu[i]=Pr(surviving i days | fatal case)}

\item{alpha.start.values}{a vector starting values for the reporting rate
parameter of the GLM model. This must have length which corresponds to one
less than the number of unique integer values of full.dat[,"new.times"].}

\item{full.data}{A matrix of observed data. See description below.}

\item{max.iter}{The maximum number of iterations for the EM algorithm and
the accompanying SEM algorithm (if used).}

\item{verb}{An indicator for whether the function should print results as it
runs.}

\item{tol}{A tolerance to use to test for convergence of the EM algorithm.}

\item{SEM.var}{If TRUE, the SEM algorithm will be run in addition to the EM
algorithm to calculate the variance of the parameter estimates.}
}
\value{
A list with the following elements \describe{ \item{naive.rel.cfr
  }{the naive estimate of the relative case fatality ratio} 
  \item{glm.rel.cfr }{the reporting-rate-adjusted estimate of the relative
  case fatality ratio} \item{EM.rel.cfr }{the lag-adjusted estimate of the
  relative case fatality ratio} \item{EM.re.cfr.var }{the variance for the
  log-scale lag-adjusted estimator taken from the final M-step} 
  \item{EM.rel.cfr.var.SEM }{ the Supplemented EM algorithm variance for the
  log-scale lag-adjusted estimator} \item{EM.rel.cfr.chain }{a vector of the
  EM algorithm iterates of the lag-adjusted relative CFR estimates} 
  \item{EMiter}{the number of iterations needed for the EM algorithm to
  converge} \item{EMconv}{indicator for convergence of the EM algorithm.  0
  indicates all parameters converged within max.iter iterations.  1 indicates
  that the estimate of the relative case fatality ratio converged but other
  did not.  2 indicates that the relative case fatality ratio did not
  converge.} \item{SEMconv}{indicator for convergence of SEM algorithm. 
  Same scheme as EMconv.} \item{ests}{ the coefficient estimates for the
  model } \item{ests.chain}{ a matrix with all of the coefficient estimates,
  at each EM iteration} \item{DM}{the DM matrix from the SEM algorithm} 
  \item{DMiter}{a vector showing how many iterations it took for the
  variance component to converge in the SEM algorithm} }
}
\description{
This function implements an EM algorithm to estimate the relative case
fatality ratio between two groups when reporting rates are time-varying and
deaths are lagged because of survival time.
}
\details{
The data matrix full.data must have the following columns: 
  \describe{ \item{grp}{a 1 or a 2 indicating which of the two groups, j, 
  the observation is for.} \item{new.times}{an integer value representing
  the time, t, of observation.} \item{R}{the count of recovered cases with
  onset at time t in group j.} \item{D}{the count of deaths which occurred at
  time t in groupo j (note that these deaths did not have disease onset at
  time t but rather died at time t).} \item{N}{the total cases at t, j, or
  the sum of R and D columns.} }
}
\examples{
       
    ## This is code from the CFR vignette provided in the documentation.
       
data(simulated.outbreak.deaths)
min.cases <- 10 
N.1 <- simulated.outbreak.deaths[1:60, "N"] 
N.2 <- simulated.outbreak.deaths[61:120, "N"] 
first.t <- min(which(N.1 > min.cases & N.2 > min.cases)) 
last.t <- max(which(N.1 > min.cases & N.2 > min.cases)) 
idx.for.Estep <- first.t:last.t 
new.times <- 1:length(idx.for.Estep) 
simulated.outbreak.deaths <- cbind(simulated.outbreak.deaths, new.times = NA) 
simulated.outbreak.deaths[c(idx.for.Estep, idx.for.Estep + 60), "new.times"] <- rep(new.times, + 2)
assumed.nu = c(0, 0.3, 0.4, 0.3)
alpha.start <- rep(0, 22)
       
## caution! this next line may take several minutes (5-10, depanding on 
##    the speed of your machine) to run.
\dontrun{cfr.ests <- EMforCFR(assumed.nu = assumed.nu, 
                              alpha.start.values = alpha.start, 
                              full.data = simulated.outbreak.deaths, 
                              verb = FALSE, 
                              SEM.var = TRUE, 
                              max.iter = 500, 
                              tol = 1e-05)}
}
\keyword{case}
\keyword{coarse}
\keyword{data}
\keyword{disease}
\keyword{fatality}
\keyword{incomplete}
\keyword{infectious}
\keyword{ratio}