File: cd.fit.Rd

package info (click to toggle)
r-cran-coarsedatatools 0.6-6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 328 kB
  • sloc: makefile: 2
file content (26 lines) | stat: -rw-r--r-- 2,226 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/S4stuff.R
\docType{class}
\name{cd.fit}
\alias{cd.fit}
\alias{cd.fit-class}
\title{An S4 Class that stores a fitted coarse data object}
\description{
This is the output from \code{dic.fit()}, which contains the important bits of information about the model fit and key options used.
}
\section{Slots}{

 \describe{
   \item{\code{ests}:}{Matrix of class \code{"numeric"}. This matrix summarizes the results of fitting the model. Rows correspond to the first parameter , the second parameter and then percentiles specified by the ptiles argument. Columns correspond to the point estimate, the lower and upper bounds on the 95\% confidence interval and the standard error of the point estimate. If the maximization does not converge, this matrix is filled with NAs.}
   \item{\code{conv}:}{Object of class \code{"numeric"}. A value of 1 indicates successful convergence; 0 indicates unsuccessful convergence.}
   \item{\code{MSG}:}{Object of class \code{"character"}. The error message returned from \code{optim()} if the routine fails to converge.}
   \item{\code{loglik}:}{Object of class \code{"numeric"}. Value of the estimated maximum log-likelihood.}
   \item{\code{samples}:}{Object of class \code{"data.frame"}. Data frame of bootstrap estimates of parameters (if bootstraps were performed).}
   \item{\code{data}:}{Object of class \code{"data.frame"}. Original data used to fit model.}
   \item{\code{dist}:}{Object of class \code{"character"}. Failure time distribution fit to data. "L" for log-normal, "G" for gamma, "W" for Weibull, and "E" for Erlang.}
   \item{\code{inv.hessian}:}{Object of class \code{"matrix"}. The inverse of the hessian matrix for the likelihood surface at the MLE. Used to determine the standard errors for the percentiles. Note that optimization is done on a transformed scale with all parameters logged for all distributions except the first parameter of the log-normal distribution.}
   \item{\code{est.method}:}{Object of class \code{"character"}. Method used for estimation.}
   \item{\code{ci.method}:}{Object of class \code{"character"}. Method used for estimation of confidence/credible intervals.}
 }
}