1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
# All matrices in this file are adapted from https://github.com/njsmith/colorspacious/blob/master/colorspacious/cvd.py
#' Color Vision Deficiency (CVD) Conversion Tables
#'
#' Conversion tables for simulating different types of color vision deficiency (CVD):
#' Protanomaly, deutanomaly, tritanomaly.
#'
#' Machado et al. (2009) have established a novel model, that allows to handle normal color
#' vision, anomalous trichromacy, and dichromacy in a unified way. They also provide conversion
#' formulas along with tables of certain constants that allow to simulate various types of
#' CVD. See \code{\link{simulate_cvd}} for the corresponding simulation functions.
#'
#' @name cvd
#' @rdname cvd
#' @format Lists of 3x3 RGB-color transformation matrices for the various types of CVD. Each list contains 11 transformation matrices
#' representing increasingly severe color vision deficiency.
#' @usage NULL
#' @seealso \code{\link{simulate_cvd}}
#' @references Machado GM, Oliveira MM, Fernandes LAF (2009).
#' A Physiologically-Based Model for Simulation of Color Vision Deficiency.
#' \emph{IEEE Transactions on Visualization and Computer Graphics}. \bold{15}(6), 1291--1298.
#' \doi{10.1109/TVCG.2009.113}
#' Online version with supplements at
#' \url{http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html}.
#'
#' Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
#' \dQuote{colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.}
#' \emph{Journal of Statistical Software}, \bold{96}(1), 1--49. \doi{10.18637/jss.v096.i01}
NULL
#' @rdname cvd
#' @format NULL
#' @usage protanomaly_cvd
#' @export
protanomaly_cvd <- list(
"0" = matrix(c(
1.000000, 0.000000, -0.000000,
0.000000, 1.000000, 0.000000,
-0.000000, -0.000000, 1.000000
), 3,3,byrow = TRUE),
"1" = matrix(c(
0.856167, 0.182038, -0.038205,
0.029342, 0.955115, 0.015544,
-0.002880, -0.001563, 1.004443
),3,3,byrow=TRUE),
"2" = matrix(c(
0.734766, 0.334872, -0.069637,
0.051840, 0.919198, 0.028963,
-0.004928, -0.004209, 1.009137
),3,3,byrow=TRUE),
"3" = matrix(c(
0.630323, 0.465641, -0.095964,
0.069181, 0.890046, 0.040773,
-0.006308, -0.007724, 1.014032
),3,3,byrow=TRUE),
"4" = matrix(c(
0.539009, 0.579343, -0.118352,
0.082546, 0.866121, 0.051332,
-0.007136, -0.011959, 1.019095
),3,3,byrow=TRUE),
"5" = matrix(c(
0.458064, 0.679578, -0.137642,
0.092785, 0.846313, 0.060902,
-0.007494, -0.016807, 1.024301
),3,3,byrow=TRUE),
"6" = matrix(c(
0.385450, 0.769005, -0.154455,
0.100526, 0.829802, 0.069673,
-0.007442, -0.022190, 1.029632
),3,3,byrow=TRUE),
"7" = matrix(c(
0.319627, 0.849633, -0.169261,
0.106241, 0.815969, 0.077790,
-0.007025, -0.028051, 1.035076
),3,3,byrow=TRUE),
"8" = matrix(c(
0.259411, 0.923008, -0.182420,
0.110296, 0.804340, 0.085364,
-0.006276, -0.034346, 1.040622
),3,3,byrow=TRUE),
"9" = matrix(c(
0.203876, 0.990338, -0.194214,
0.112975, 0.794542, 0.092483,
-0.005222, -0.041043, 1.046265
),3,3,byrow=TRUE),
"10" = matrix(c(
0.152286, 1.052583, -0.204868,
0.114503, 0.786281, 0.099216,
-0.003882, -0.048116, 1.051998
),3,3,byrow=TRUE)
)
#' @rdname cvd
#' @format NULL
#' @usage deutanomaly_cvd
#' @export
deutanomaly_cvd <- list(
"0" = matrix(c(
1.000000, 0.000000, -0.000000,
0.000000, 1.000000, 0.000000,
-0.000000, -0.000000, 1.000000
),3,3,byrow=TRUE),
"1" = matrix(c(
0.866435, 0.177704, -0.044139,
0.049567, 0.939063, 0.011370,
-0.003453, 0.007233, 0.996220
),3,3,byrow=TRUE),
"2" = matrix(c(
0.760729, 0.319078, -0.079807,
0.090568, 0.889315, 0.020117,
-0.006027, 0.013325, 0.992702
),3,3,byrow=TRUE),
"3" = matrix(c(
0.675425, 0.433850, -0.109275,
0.125303, 0.847755, 0.026942,
-0.007950, 0.018572, 0.989378
),3,3,byrow=TRUE),
"4" = matrix(c(
0.605511, 0.528560, -0.134071,
0.155318, 0.812366, 0.032316,
-0.009376, 0.023176, 0.986200
),3,3,byrow=TRUE),
"5" = matrix(c(
0.547494, 0.607765, -0.155259,
0.181692, 0.781742, 0.036566,
-0.010410, 0.027275, 0.983136
),3,3,byrow=TRUE),
"6" = matrix(c(
0.498864, 0.674741, -0.173604,
0.205199, 0.754872, 0.039929,
-0.011131, 0.030969, 0.980162
),3,3,byrow=TRUE),
"7" = matrix(c(
0.457771, 0.731899, -0.189670,
0.226409, 0.731012, 0.042579,
-0.011595, 0.034333, 0.977261
),3,3,byrow=TRUE),
"8" = matrix(c(
0.422823, 0.781057, -0.203881,
0.245752, 0.709602, 0.044646,
-0.011843, 0.037423, 0.974421
),3,3,byrow=TRUE),
"9" = matrix(c(
0.392952, 0.823610, -0.216562,
0.263559, 0.690210, 0.046232,
-0.011910, 0.040281, 0.971630
),3,3,byrow=TRUE),
"10" = matrix(c(
0.367322, 0.860646, -0.227968,
0.280085, 0.672501, 0.047413,
-0.011820, 0.042940, 0.968881
),3,3,byrow=TRUE)
)
#' @rdname cvd
#' @format NULL
#' @usage tritanomaly_cvd
#' @export
tritanomaly_cvd <- list(
"0" = matrix(c(
1.000000, 0.000000, -0.000000,
0.000000, 1.000000, 0.000000,
-0.000000, -0.000000, 1.000000
),3,3,byrow=TRUE),
"1" = matrix(c(
0.926670, 0.092514, -0.019184,
0.021191, 0.964503, 0.014306,
0.008437, 0.054813, 0.936750
),3,3,byrow=TRUE),
"2" = matrix(c(
0.895720, 0.133330, -0.029050,
0.029997, 0.945400, 0.024603,
0.013027, 0.104707, 0.882266
),3,3,byrow=TRUE),
"3" = matrix(c(
0.905871, 0.127791, -0.033662,
0.026856, 0.941251, 0.031893,
0.013410, 0.148296, 0.838294
),3,3,byrow=TRUE),
"4" = matrix(c(
0.948035, 0.089490, -0.037526,
0.014364, 0.946792, 0.038844,
0.010853, 0.193991, 0.795156
),3,3,byrow=TRUE),
"5" = matrix(c(
1.017277, 0.027029, -0.044306,
-0.006113, 0.958479, 0.047634,
0.006379, 0.248708, 0.744913
),3,3,byrow=TRUE),
"6" = matrix(c(
1.104996, -0.046633, -0.058363,
-0.032137, 0.971635, 0.060503,
0.001336, 0.317922, 0.680742
),3,3,byrow=TRUE),
"7" = matrix(c(
1.193214, -0.109812, -0.083402,
-0.058496, 0.979410, 0.079086,
-0.002346, 0.403492, 0.598854
),3,3,byrow=TRUE),
"8" = matrix(c(
1.257728, -0.139648, -0.118081,
-0.078003, 0.975409, 0.102594,
-0.003316, 0.501214, 0.502102
),3,3,byrow=TRUE),
"9" = matrix(c(
1.278864, -0.125333, -0.153531,
-0.084748, 0.957674, 0.127074,
-0.000989, 0.601151, 0.399838
),3,3,byrow=TRUE),
"10" = matrix(c(
1.255528, -0.076749, -0.178779,
-0.078411, 0.930809, 0.147602,
0.004733, 0.691367, 0.303900
),3,3,byrow=TRUE)
)
|