File: demoplot.R

package info (click to toggle)
r-cran-colorspace 2.1-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,704 kB
  • sloc: ansic: 1,200; sh: 13; makefile: 5
file content (228 lines) | stat: -rw-r--r-- 8,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#' Color Palette Demonstration Plot
#' 
#' Demonstration of color palettes in various kinds of statistical graphics.
#' 
#' To demonstrate how different kinds of color palettes work in different
#' kinds of statistical displays, \code{demoplot} provides a simple convenience
#' interface to some base graphics with (mostly artificial) data sets.
#' All types of demos can deal with arbitrarily many colors. However, some
#' displays are much more suitable for a low number of colors (e.g., the pie
#' chart) while others work better with more colors (e.g., the heatmap).
#' 
#' @param x character vector containing color hex codes.
#' @param type character indicating the type of demonstration plot.
#' @param \dots currently not used.
#' @return \code{demoplot} returns invisibly what the respective base graphics
#' functions return that are called internally.
#' @seealso \code{\link{specplot}}, \code{\link{hclplot}}
#' @references Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
#' \dQuote{colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.}
#' \emph{Journal of Statistical Software}, \bold{96}(1), 1--49. \doi{10.18637/jss.v096.i01}
#' @keywords hplot
#' @examples
#' ## all built-in demos with the same sequential heat color palette
#' par(mfrow = c(3, 3))
#' cl <- sequential_hcl(5, "Heat")
#' for (i in c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines")) {
#'   demoplot(cl, type = i)
#' }
#' 
#' ## qualitative palettes: light pastel colors for shading areas (pie)
#' ## and darker colorful palettes for points or lines
#' demoplot(qualitative_hcl(4, "Pastel 1"), type = "pie")
#' demoplot(qualitative_hcl(4, "Set 2"), type = "scatter")
#' demoplot(qualitative_hcl(4, "Dark 3"), type = "lines")
#' 
#' ## sequential palettes: display almost continuous gradients with
#' ## strong luminance contrasts (heatmap, perspective) and colorful
#' ## sequential palette for spine plot with only a few ordered categories
#' demoplot(sequential_hcl(99, "Purple-Blue"), type = "heatmap")
#' demoplot(sequential_hcl(99, "Reds"), type = "perspective")
#' demoplot(sequential_hcl(4, "Viridis"), type = "spine")
#' 
#' ## diverging palettes: display almost continuous gradient with
#' ## strong luminance contrast bringing out the extremes (map),
#' ## more colorful palette with lower luminance contrasts for displays
#' ## with fewer colors (mosaic, bar)
#' demoplot(diverging_hcl(99, "Tropic", power = 2.5), type = "map")
#' demoplot(diverging_hcl(5, "Green-Orange"), type = "mosaic")
#' demoplot(diverging_hcl(5, "Blue-Red 2"), type = "bar")
#' 
#' ## some palettes that work well on black backgrounds
#' par(mfrow = c(2, 3), bg = "black")
#' demoplot(sequential_hcl(9, "Oslo"), "heatmap")
#' demoplot(sequential_hcl(9, "Turku"), "heatmap")
#' demoplot(sequential_hcl(9, "Inferno", rev = TRUE), "heatmap")
#' demoplot(qualitative_hcl(9, "Set 2"), "lines")
#' demoplot(diverging_hcl(9, "Berlin"), "scatter")
#' demoplot(diverging_hcl(9, "Cyan-Magenta", l2 = 20), "lines")
#' 
#' @export demoplot
#' @importFrom graphics barplot image persp pie plot polygon rect segments
demoplot <- function(x,
  type = c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines"),
  ...)
{
  type <- match.arg(type,
    c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines"))
  do.call(paste("plot", type, sep = "_"), list(x = x, ...))
}


# Plot map example 
plot_map <- function(x, ...) {
   n <- length(x)
   plot(0, 0, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n",
        xlim = c(-88.5, -78.6), ylim = c(30.2, 35.2), asp = 1)
   polygon(colorspace::USSouthPolygon,
           col = x[cut(stats::na.omit(colorspace::USSouthPolygon$z), 
           breaks = 0:n / n)])
}
  
# Plot heatmap example
plot_heatmap <- function(x, ...) {
   image(datasets::volcano, col = rev(x), bty = "n", xaxt = "n", yaxt = "n", useRaster = TRUE)
}
  
# Plot scatter example
.example_env <- new.env()
.example_env$xyhclust <- NULL
plot_scatter <- function(x, ...) {
  
   # Generate artificial data 
   if (is.null(.example_env$xyhclust)) {
      set.seed(1071)
      x0 <- sin(pi * 1:60 / 30) / 5
      y0 <- cos(pi * 1:60 / 30) / 5
      xr <- c(0.1, -0.6, -0.7, -0.9,  0.4,  1.3, 1.0)
      yr <- c(0.3,  1.0,  0.1, -0.9, -0.8, -0.4, 0.6)
      dat <- data.frame(
        x=c(x0 + xr[1], x0 + xr[2], x0 + xr[3], x0 + xr[4], x0 + xr[5], 
            x0 + xr[6], x0 + xr[7]),
        y=c(y0 + yr[1], y0 + yr[2], y0 + yr[3], y0 + yr[4], y0 + yr[5], 
            y0 + yr[6], y0 + yr[7])
      )
      attr(dat, "hclust") <- stats::hclust(stats::dist(dat), method = "ward.D")
      dat$xerror <- stats::rnorm(nrow(dat), sd=stats::runif(nrow(dat), 0.05, 0.45))
      dat$yerror <- stats::rnorm(nrow(dat), sd=stats::runif(nrow(dat), 0.05, 0.45))
      .example_env$xyhclust <- dat
   }
   plot(.example_env$xyhclust$x +
        .example_env$xyhclust$xerror,
	.example_env$xyhclust$y +
	.example_env$xyhclust$yerror,
        col = "black", bg = x[stats::cutree(attr(.example_env$xyhclust, "hclust"), length(x))],
        xlab = "", ylab = "", axes = FALSE, pch = 21, cex = 1.3)
}
  
# Plot spine example
plot_spine <- function(x, ...) {
   n <- length(x)
   
   # Rectangle dimensions
   off <- 0.015
   widths <- c(0.05, 0.1, 0.15, 0.1, 0.2, 0.08, 0.12, 0.16, 0.04)
   k <- length(widths)
   heights <- sapply(
      c(2.5, 1.2, 2.7, 1, 1.3, 0.7, 0.4, 0.2, 1.7),
      function(p) (0:n / n)^(1 / p)
   )
  
   # Rectangle coordinates
   xleft0 <- c(0, cumsum(widths + off)[-k])
   xleft <- rep(xleft0, each=n)
   xright <- xleft + rep(widths, each=n)
   ybottom <- as.vector(heights[-(n + 1), ])
   ytop <- as.vector(heights[-1, ])
  
   # Draw rectangles, borders, and annotation
   plot(0, 0, xlim=c(0, sum(widths) + off * (k - 1)), ylim=c(0, 1),
        xaxs="i", yaxs="i", main="", xlab="", ylab="",
        type="n", axes=FALSE)
   rect(xleft, ybottom, xright, ytop, col = rep(x, k),
        border = if(n < 10) "black" else "transparent")
   if(n >= 10) rect(xleft0, 0, xleft0 + widths, 1, border="black")
}
  
# Plot bar example
plot_bar <- function(x, ...) {
   barplot(cbind(1.1 + abs(sin(0.5 + seq_along(x))) / 3,
           1.9 + abs(cos(1.1 + seq_along(x))) / 3,
           0.7 + abs(sin(1.5 + seq_along(x))) / 3,
           0.3 + abs(cos(0.8 + seq_along(x))) / 3),
           beside = TRUE, col = x, axes = FALSE)
}

# Plot pie example
plot_pie <- function(x, ...) {
   pie(0.01 + abs(sin(0.5 + seq_along(x))), labels = "", col = x, radius = 1)
}
  
# Plot perspective example
plot_perspective <- function(x, ...) {
   # Mixture of bivariate normals
   n <- 31
   x1 <- x2 <- seq(-3, 3, length.out = n)
   y <- outer(x1, x2, 
            function(x, y) {
                0.5 * stats::dnorm(x, mean = -1, sd = 0.80) * stats::dnorm(y, mean = -1, sd = 0.80) +
                0.5 * stats::dnorm(x, mean =  1, sd = 0.72) * stats::dnorm(y, mean =  1, sd = 0.72)
            }
        )

   # Compute color based on density
   if (length(x) > 1) {
      facet <- cut(y[-1, -1] + y[-1, -n] + y[-n, -1] + y[-n, -n], 
                   length(x))
      cols <- rev(x)[facet]
   } else {
      cols <- x
   }

   # Perspective plot coding z-axis with color
   persp(x1, x2, y, col = cols, phi = 28, theta = 20, r = 5, xlab = "", ylab = "", zlab = "")
}
  
# Plot mosaic example
.example_env$msc.matrix <- NULL
plot_mosaic <- function(x, ...) {
   if (is.null(.example_env$msc.matrix)) {
      set.seed(1071)
      mat <- list()
      for (i in 1:50) {
         mat[[i]] <- matrix(stats::runif(i * 10, min = -1, max = 1), nrow = 10, ncol = i)
      }
      .example_env$msc.matrix <- mat
   }
   image(.example_env$msc.matrix[[length(x)]], bty = "n", col = x, xaxt = "n", yaxt = "n")
}
  
# Plot lines example
plot_lines <- function(x, ...) {
   n <- length(x)
   plot(NULL, xlab = "", ylab = "", xaxt = "n", yaxt = "n", type = "n", 
        bty = "n", xlim = c(0, 6), ylim = c(1.5, n + 1.5))
   s <- 2:(n + 1)
   rev.s <- rev(s)
   rev.x <- rev(x)
   lwd <- 6
   if (n > 5)
      lwd <- lwd -1
   if (n > 15)
      lwd <- lwd -1
   if (n > 25)
      lwd <- lwd -1
   segments(1 / s, s, 2 + 1 / rev.s, rev.s, x, lwd = lwd)
   segments(2 + 1 / s, s, 4 - 1 / s, s, rev.x, lwd = lwd)
   segments(4 - 1 / s, s, 6 - 1 / s, rev.s, rev.x, lwd = lwd)
}

# Wrapper around specplot. Used by the tcltk interface.
plot_spectrum <- function(x, cex = 1.0, plot = TRUE, rgb = TRUE, ...)
   specplot(x, cex = cex, plot = plot, rgb = rgb, ...)

# Wrapper around hclplot. Used by the tcltk interface.
plot_hclplot <- function(x, cex = 1.0, ...)
   hclplot(x, cex = cex, ...)