1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#' Color Palette Demonstration Plot
#'
#' Demonstration of color palettes in various kinds of statistical graphics.
#'
#' To demonstrate how different kinds of color palettes work in different
#' kinds of statistical displays, \code{demoplot} provides a simple convenience
#' interface to some base graphics with (mostly artificial) data sets.
#' All types of demos can deal with arbitrarily many colors. However, some
#' displays are much more suitable for a low number of colors (e.g., the pie
#' chart) while others work better with more colors (e.g., the heatmap).
#'
#' @param x character vector containing color hex codes.
#' @param type character indicating the type of demonstration plot.
#' @param \dots currently not used.
#' @return \code{demoplot} returns invisibly what the respective base graphics
#' functions return that are called internally.
#' @seealso \code{\link{specplot}}, \code{\link{hclplot}}
#' @references Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
#' \dQuote{colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.}
#' \emph{Journal of Statistical Software}, \bold{96}(1), 1--49. \doi{10.18637/jss.v096.i01}
#' @keywords hplot
#' @examples
#' ## all built-in demos with the same sequential heat color palette
#' par(mfrow = c(3, 3))
#' cl <- sequential_hcl(5, "Heat")
#' for (i in c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines")) {
#' demoplot(cl, type = i)
#' }
#'
#' ## qualitative palettes: light pastel colors for shading areas (pie)
#' ## and darker colorful palettes for points or lines
#' demoplot(qualitative_hcl(4, "Pastel 1"), type = "pie")
#' demoplot(qualitative_hcl(4, "Set 2"), type = "scatter")
#' demoplot(qualitative_hcl(4, "Dark 3"), type = "lines")
#'
#' ## sequential palettes: display almost continuous gradients with
#' ## strong luminance contrasts (heatmap, perspective) and colorful
#' ## sequential palette for spine plot with only a few ordered categories
#' demoplot(sequential_hcl(99, "Purple-Blue"), type = "heatmap")
#' demoplot(sequential_hcl(99, "Reds"), type = "perspective")
#' demoplot(sequential_hcl(4, "Viridis"), type = "spine")
#'
#' ## diverging palettes: display almost continuous gradient with
#' ## strong luminance contrast bringing out the extremes (map),
#' ## more colorful palette with lower luminance contrasts for displays
#' ## with fewer colors (mosaic, bar)
#' demoplot(diverging_hcl(99, "Tropic", power = 2.5), type = "map")
#' demoplot(diverging_hcl(5, "Green-Orange"), type = "mosaic")
#' demoplot(diverging_hcl(5, "Blue-Red 2"), type = "bar")
#'
#' ## some palettes that work well on black backgrounds
#' par(mfrow = c(2, 3), bg = "black")
#' demoplot(sequential_hcl(9, "Oslo"), "heatmap")
#' demoplot(sequential_hcl(9, "Turku"), "heatmap")
#' demoplot(sequential_hcl(9, "Inferno", rev = TRUE), "heatmap")
#' demoplot(qualitative_hcl(9, "Set 2"), "lines")
#' demoplot(diverging_hcl(9, "Berlin"), "scatter")
#' demoplot(diverging_hcl(9, "Cyan-Magenta", l2 = 20), "lines")
#'
#' @export demoplot
#' @importFrom graphics barplot image persp pie plot polygon rect segments
demoplot <- function(x,
type = c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines"),
...)
{
type <- match.arg(type,
c("map", "heatmap", "scatter", "spine", "bar", "pie", "perspective", "mosaic", "lines"))
do.call(paste("plot", type, sep = "_"), list(x = x, ...))
}
# Plot map example
plot_map <- function(x, ...) {
n <- length(x)
plot(0, 0, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n",
xlim = c(-88.5, -78.6), ylim = c(30.2, 35.2), asp = 1)
polygon(colorspace::USSouthPolygon,
col = x[cut(stats::na.omit(colorspace::USSouthPolygon$z),
breaks = 0:n / n)])
}
# Plot heatmap example
plot_heatmap <- function(x, ...) {
image(datasets::volcano, col = rev(x), bty = "n", xaxt = "n", yaxt = "n", useRaster = TRUE)
}
# Plot scatter example
.example_env <- new.env()
.example_env$xyhclust <- NULL
plot_scatter <- function(x, ...) {
# Generate artificial data
if (is.null(.example_env$xyhclust)) {
set.seed(1071)
x0 <- sin(pi * 1:60 / 30) / 5
y0 <- cos(pi * 1:60 / 30) / 5
xr <- c(0.1, -0.6, -0.7, -0.9, 0.4, 1.3, 1.0)
yr <- c(0.3, 1.0, 0.1, -0.9, -0.8, -0.4, 0.6)
dat <- data.frame(
x=c(x0 + xr[1], x0 + xr[2], x0 + xr[3], x0 + xr[4], x0 + xr[5],
x0 + xr[6], x0 + xr[7]),
y=c(y0 + yr[1], y0 + yr[2], y0 + yr[3], y0 + yr[4], y0 + yr[5],
y0 + yr[6], y0 + yr[7])
)
attr(dat, "hclust") <- stats::hclust(stats::dist(dat), method = "ward.D")
dat$xerror <- stats::rnorm(nrow(dat), sd=stats::runif(nrow(dat), 0.05, 0.45))
dat$yerror <- stats::rnorm(nrow(dat), sd=stats::runif(nrow(dat), 0.05, 0.45))
.example_env$xyhclust <- dat
}
plot(.example_env$xyhclust$x +
.example_env$xyhclust$xerror,
.example_env$xyhclust$y +
.example_env$xyhclust$yerror,
col = "black", bg = x[stats::cutree(attr(.example_env$xyhclust, "hclust"), length(x))],
xlab = "", ylab = "", axes = FALSE, pch = 21, cex = 1.3)
}
# Plot spine example
plot_spine <- function(x, ...) {
n <- length(x)
# Rectangle dimensions
off <- 0.015
widths <- c(0.05, 0.1, 0.15, 0.1, 0.2, 0.08, 0.12, 0.16, 0.04)
k <- length(widths)
heights <- sapply(
c(2.5, 1.2, 2.7, 1, 1.3, 0.7, 0.4, 0.2, 1.7),
function(p) (0:n / n)^(1 / p)
)
# Rectangle coordinates
xleft0 <- c(0, cumsum(widths + off)[-k])
xleft <- rep(xleft0, each=n)
xright <- xleft + rep(widths, each=n)
ybottom <- as.vector(heights[-(n + 1), ])
ytop <- as.vector(heights[-1, ])
# Draw rectangles, borders, and annotation
plot(0, 0, xlim=c(0, sum(widths) + off * (k - 1)), ylim=c(0, 1),
xaxs="i", yaxs="i", main="", xlab="", ylab="",
type="n", axes=FALSE)
rect(xleft, ybottom, xright, ytop, col = rep(x, k),
border = if(n < 10) "black" else "transparent")
if(n >= 10) rect(xleft0, 0, xleft0 + widths, 1, border="black")
}
# Plot bar example
plot_bar <- function(x, ...) {
barplot(cbind(1.1 + abs(sin(0.5 + seq_along(x))) / 3,
1.9 + abs(cos(1.1 + seq_along(x))) / 3,
0.7 + abs(sin(1.5 + seq_along(x))) / 3,
0.3 + abs(cos(0.8 + seq_along(x))) / 3),
beside = TRUE, col = x, axes = FALSE)
}
# Plot pie example
plot_pie <- function(x, ...) {
pie(0.01 + abs(sin(0.5 + seq_along(x))), labels = "", col = x, radius = 1)
}
# Plot perspective example
plot_perspective <- function(x, ...) {
# Mixture of bivariate normals
n <- 31
x1 <- x2 <- seq(-3, 3, length.out = n)
y <- outer(x1, x2,
function(x, y) {
0.5 * stats::dnorm(x, mean = -1, sd = 0.80) * stats::dnorm(y, mean = -1, sd = 0.80) +
0.5 * stats::dnorm(x, mean = 1, sd = 0.72) * stats::dnorm(y, mean = 1, sd = 0.72)
}
)
# Compute color based on density
if (length(x) > 1) {
facet <- cut(y[-1, -1] + y[-1, -n] + y[-n, -1] + y[-n, -n],
length(x))
cols <- rev(x)[facet]
} else {
cols <- x
}
# Perspective plot coding z-axis with color
persp(x1, x2, y, col = cols, phi = 28, theta = 20, r = 5, xlab = "", ylab = "", zlab = "")
}
# Plot mosaic example
.example_env$msc.matrix <- NULL
plot_mosaic <- function(x, ...) {
if (is.null(.example_env$msc.matrix)) {
set.seed(1071)
mat <- list()
for (i in 1:50) {
mat[[i]] <- matrix(stats::runif(i * 10, min = -1, max = 1), nrow = 10, ncol = i)
}
.example_env$msc.matrix <- mat
}
image(.example_env$msc.matrix[[length(x)]], bty = "n", col = x, xaxt = "n", yaxt = "n")
}
# Plot lines example
plot_lines <- function(x, ...) {
n <- length(x)
plot(NULL, xlab = "", ylab = "", xaxt = "n", yaxt = "n", type = "n",
bty = "n", xlim = c(0, 6), ylim = c(1.5, n + 1.5))
s <- 2:(n + 1)
rev.s <- rev(s)
rev.x <- rev(x)
lwd <- 6
if (n > 5)
lwd <- lwd -1
if (n > 15)
lwd <- lwd -1
if (n > 25)
lwd <- lwd -1
segments(1 / s, s, 2 + 1 / rev.s, rev.s, x, lwd = lwd)
segments(2 + 1 / s, s, 4 - 1 / s, s, rev.x, lwd = lwd)
segments(4 - 1 / s, s, 6 - 1 / s, rev.s, rev.x, lwd = lwd)
}
# Wrapper around specplot. Used by the tcltk interface.
plot_spectrum <- function(x, cex = 1.0, plot = TRUE, rgb = TRUE, ...)
specplot(x, cex = cex, plot = plot, rgb = rgb, ...)
# Wrapper around hclplot. Used by the tcltk interface.
plot_hclplot <- function(x, cex = 1.0, ...)
hclplot(x, cex = cex, ...)
|