1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
#' Palette Plot in HCL Space
#'
#' Visualization of color palettes in HCL space projections.
#'
#' The function \code{hclplot} is an auxiliary function for illustrating
#' the trajectories of color palettes in two-dimensional HCL space projections.
#' It collapses over one of the three coordinates (either the hue H or the
#' luminance L) and displays a heatmap of colors combining the remaining
#' two dimensions. The coordinates for the given color palette are highlighted
#' to bring out its trajectory.
#'
#' The function \code{hclplot} has been designed to work well with the
#' \code{\link{hcl_palettes}} in this package. While it is possible to apply
#' it to other color palettes as well, the results might look weird or confusing
#' if these palettes are constructed very differently (e.g., as in the highly
#' saturated base R palettes).
#'
#' More specifically, the following palettes can be visualized well: \itemize{
#' \item Qualitative with (approximately) constant luminance. In this case,
#' \code{hclplot} shows a hue-chroma plane (in polar coordinates), keeping
#' luminance at a fixed level (by default displayed in the main title of
#' the plot). If the luminance is, in fact, not approximately constant,
#' the luminance varies along with hue and chroma, using a simple linear
#' function (fitted by least squares).
# \item Sequential with (approximately) constant hue. In this case,
#' \code{hclplot} shows a chroma-luminance plane, keeping hue at a fixed
#' level (by default displayed in the main title of the plot). If the hue
#' is, in fact, not approximately constant, the hue varies along with
#' chroma and luminance, using a simple linear function (fitted by least
#' squares.
#' \item Diverging with two (approximately) constant hues: This case is
#' visualized with two back-to-back sequential displays.
#' }
#' To infer the type of display to use, by default, the following heuristic is
#' used: If luminance is not approximately constant (range > 10) and follows
#' rougly a triangular pattern, a diverging display is used. If luminance is
#' not constant and follows roughly a linear pattern, a sequential display is
#' used. Otherwise a qualitative display is used.
#'
#' @param x character vector containing color hex codes, or a \code{\link{color-class}}
#' object.
#' @param type type character specifying which type of palette should be visualized
#' (\code{"qualitative"}, \code{"sequential"}, or \code{"diverging"}).
#' For qualitative palettes a hue-chroma plane is used, otherwise a chroma-luminance plane.
#' By default, the \code{type} is inferred from the luminance trajectory corresponding
#' to \code{x}.
#' @param h numeric hue(s) to be used for \code{type = "sequential"} and \code{type = "diverging"}.
#' By default, these are inferred from the colors in \code{x}.
#' @param c numeric. Maximal chroma value to be used.
#' @param l numeric luminance(s) to be used for \code{type = "qualitative"}.
#' By default, this is inferred from the colors in \code{x}.
#' @param xlab,ylab,main character strings for annotation, by default generated from
#' the type of color palette visualized.
#' @param cex numeric character extension.
#' @param axes logical. Should axes be drawn?
#' @param bg,lwd,size graphical control parameters for the color palette trajectory.
#' @param \dots currently not used.
#'
#' @return \code{hclplot} invisibly returns a matrix with the HCL coordinates corresponding to \code{x}.
#' @seealso \code{\link{specplot}}
#' @references Zeileis A, Fisher JC, Hornik K, Ihaka R, McWhite CD, Murrell P, Stauffer R, Wilke CO (2020).
#' \dQuote{colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.}
#' \emph{Journal of Statistical Software}, \bold{96}(1), 1--49. \doi{10.18637/jss.v096.i01}
#' @keywords hplot
#' @examples
#' ## for qualitative palettes luminance and chroma are fixed, varying only hue
#' hclplot(qualitative_hcl(9, c = 50, l = 70))
#'
#' ## single-hue sequential palette (h = 260) with linear vs. power-transformed trajectory
#' hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1))
#' hclplot(sequential_hcl(7, h = 260, c = 80, l = c(35, 95), power = 1.5))
#'
#' ## advanced single-hue sequential palette with triangular chroma trajectory
#' ## (piecewise linear vs. power-transformed)
#' hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = 1))
#' hclplot(sequential_hcl(7, h = 245, c = c(40, 75, 0), l = c(30, 95), power = c(0.8, 1.4)))
#'
#' ## multi-hue sequential palette with small hue range and triangular chroma vs.
#' ## large hue range and linear chroma trajectory
#' hclplot(sequential_hcl(7, h = c(260, 220), c = c(50, 75, 0), l = c(30, 95), power = 1))
#' hclplot(sequential_hcl(7, h = c(260, 60), c = 60, l = c(40, 95), power = 1))
#'
#' ## balanced diverging palette constructed from two simple single-hue sequential
#' ## palettes (for hues 260/blue and 0/red)
#' hclplot(diverging_hcl(7, h = c(260, 0), c = 80, l = c(35, 95), power = 1))
#'
#' @export hclplot
#' @importFrom graphics box lines mtext par plot points rect text
#' @importFrom stats cor lm median predict
hclplot <- function(x, type = NULL, h = NULL, c = NULL, l = NULL,
xlab = NULL, ylab = NULL, main = NULL, cex = 1.0, axes = TRUE,
bg = "white", lwd = 1, size = 2.5, ...)
{
## TODO: Not yet able to handle NA values. Thus, replace
## NA values with white, if needed.
NAidx <- which(is.na(x)); if (length(NAidx) > 0) x[NAidx] <- "#FFFFFF"
## convert to HCL coordinates
if(is.character(x)) {
HCL <- hex2RGB(x)
} else {
HCL <- x
x <- hex(x)
}
HCL <- coords(as(HCL, "polarLUV"))[, c("H", "C", "L")]
n <- nrow(HCL)
## determine type of palette based on luminance trajectory
lran <- diff(range(HCL[, "L"], na.rm = TRUE))
llin <- cor(HCL[, "L"], 1L:n, use = "pairwise.complete.obs")^2
ltri <- cor(HCL[, "L"], abs(1L:n - (n + 1)/2), use = "pairwise.complete.obs")^2
if(is.null(type)) {
type <- if(ltri > 0.75 & lran > 10) {
"diverging"
} else if(llin > 0.75 & lran > 10) {
"sequential"
} else {
"qualitative"
}
} else {
type <- match.arg(type, c("diverging", "sequential", "qualitative"))
}
## FIXME: put into separate function
if(n > 1L) {
for(i in 2L:n) {
if ( any(is.na(HCL[(i-1L):i,])) ) next
d <- HCL[i, "H"] - HCL[i - 1L, "H"]
if (abs(d) > 320) HCL[i, "H"] <- HCL[i, "H"] - sign(d) * 360
if (abs(HCL[i, "H"]) > 360) HCL[1L:i, "H"] <- HCL[1L:i, "H"] - sign(HCL[i, "H"]) * 360
}
# (2) Smoothing hue values in batches where chroma is very low
idx <- which(HCL[, "C"] < 8)
if (length(idx) == n) {
HCL[,"H"] <- mean(HCL[,"H"])
} else if (length(idx) > 0L) {
## pre-smooth hue
if(n >= 49L) {
HCL[, "H"] <- 1/3 * (
HCL[c(rep.int(1L, 2L), 1L:(n - 2L)), "H"] +
HCL[c(rep.int(1L, 1L), 1L:(n - 1L)), "H"] +
HCL[ 1L:n, "H"])
}
idxs <- split(idx, cumsum(c(1, diff(idx)) > 1))
s <- 1L
while(length(idxs) > 0L) {
e <- if(s %in% idxs[[1L]]) {
if(length(idxs) > 1L) idxs[[2L]] - 1L else n
} else {
if(n %in% idxs[[1L]]) n else round(mean(range(idxs[[1L]])))
}
io <- split(s:e, s:e %in% idx)
if (length(io) == 2L & sum(!is.na(HCL[io[["FALSE"]],"H"])) > 0) {
HCL[io[["TRUE"]], "H"] <- stats::spline(io[["FALSE"]], HCL[io[["FALSE"]], "H"],
xout = io[["TRUE"]], method = "natural")$y
}
idxs[[1L]] <- NULL
s <- e + 1L
}
}
}
maxchroma <- if(!is.null(c)) ceiling(c) else pmax(100, pmin(180, ceiling(max(HCL[, "C"], na.rm = TRUE)/20) * 20))
switch(type,
"sequential" = {
opar <- par(cex = cex, mar = c(3, 3, 2, 1) * cex, no.readonly = TRUE)
on.exit(par(opar))
nd <- expand.grid(C = 0:maxchroma, L = 0:100)
if(!is.null(h)) {
nd$H <- h
} else if(n < 3L || diff(range(HCL[, "H"], na.rm = TRUE)) < 12) {
nd$H <- median(HCL[, "H"], na.rm = TRUE)
} else {
m <- lm(H ~ C + L, data = as.data.frame(HCL))
sig <- summary(m)$sigma
if(is.na(sig) || sig > 7.5) warning("cannot approximate H well as a linear function of C and L")
nd$H <- predict(m, nd)
}
# Converting colors to HCL (no fixup), remove low-luminance colors
HCL2 <- hex(polarLUV(H = nd$H, C = nd$C, L = nd$L), fixup = FALSE)
HCL2[nd$L < 1 & nd$C > 0] <- NA
# Auto-generate main title
if(is.null(main)) {
# Reducing 'nd' to valid colors (!is.na(HCL2))
tmp <- nd[!is.na(HCL2), ]; tmp$H <- round(tmp$H)
main <- if (length(unique(tmp$H)) <= 1L) {
tmp$H[1L]
} else {
paste("[", min(tmp$H, na.rm = TRUE), ", ", max(tmp$H, na.rm = TRUE), "]", sep = "")
}
main <- paste("Hue =", main)
rm(tmp)
}
plot(0, 0, type = "n", xlim = c(0, maxchroma), ylim = c(0, 100), xaxs = "i", yaxs = "i",
xlab = NA, ylab = NA, main = main, axes = axes)
# Adding axis labels
if(axes) {
if ( is.null(xlab) ) xlab <- "Chroma"
if ( is.null(ylab) ) ylab <- "Luminance"
mtext(side = 1, line = 2 * cex, xlab, cex = cex)
mtext(side = 2, line = 2 * cex, ylab, cex = cex)
}
# Adding colors
points(nd$C, nd$L, col = HCL2, pch = 19, cex = 3)
points(HCL[, 2L:3L], pch = 19, cex = 1.1 * size * cex, type = "p", lwd = 5 * lwd, col = bg)
points(HCL[, 2L:3L], pch = 21, bg = x, cex = size * cex, type = "o", lwd = lwd)
box()
},
"diverging" = {
opar <- par(cex = cex, mar = c(3, 3, 2, 1) * cex, no.readonly = TRUE)
on.exit(par(opar))
nd <- expand.grid(C = -maxchroma:maxchroma, L = 0:100)
nd$H <- NA
nd$left <- nd$C < 0
left <- 1L:floor(n/2)
left <- left[HCL[left, "C"] > 10]
right <- (1 + ceiling(n/2)):n
right <- right[HCL[right, "C"] > 10]
if(!is.null(h)) {
if(length(h) == 2L) {
nd$H[nd$left] <- h[1L]
nd$H[!nd$left] <- h[2L]
} else {
nd$H <- h
}
} else if(n < 6L || (diff(range(HCL[left, "H"] - min(HCL[ left, "H"], na.rm = TRUE), na.rm = TRUE)) < 12 &
diff(range(HCL[right, "H"] - min(HCL[right, "H"], na.rm = TRUE), na.rm = TRUE)) < 12)) {
nd$H[nd$left] <- median(HCL[ left, "H"] - min(HCL[ left, "H"], na.rm = TRUE), na.rm = TRUE) + min(HCL[ left, "H"], na.rm = TRUE)
nd$H[!nd$left] <- median(HCL[right, "H"] - min(HCL[right, "H"], na.rm = TRUE), na.rm = TRUE) + min(HCL[right, "H"], na.rm = TRUE)
} else {
HCLdata <- as.data.frame(HCL)
HCLdata$left <- factor(rep(c(TRUE, FALSE), c(floor(n/2), ceiling(n/2))))
nd$left <- factor(nd$left)
m <- lm(H ~ left * (C + L), data = HCLdata)
sig <- summary(m)$sigma
if(is.na(sig) || sig > 7.5) warning("cannot approximate H well as a linear function of C and L")
nd$H <- predict(m, nd)
nd$left <- nd$left == "TRUE"
}
# Converting colors to HCL (no fixup), remove low-luminance colors
HCL2 <- hex(polarLUV(H = nd$H, C = abs(nd$C), L = nd$L), fixup = FALSE)
HCL2[nd$L < 1 & abs(nd$C) > 0] <- NA
# Auto-generate main title
if(is.null(main)) {
# Reducing 'nd' to valid colors (!is.na(HCL2))
tmp <- nd[!is.na(HCL2), ]; tmp$H <- round(tmp$H)
main <- if(length(unique(tmp$H)) <= 2L) {
paste(tmp$H[tmp$left][1L], "/", tmp$H[!tmp$left][1L])
} else {
paste("[", min(tmp$H[tmp$left], na.rm = TRUE), ", ", max(tmp$H[tmp$left], na.rm = TRUE), "] / [",
min(tmp$H[!tmp$left], na.rm = TRUE), ", ", max(tmp$H[!tmp$left], na.rm = TRUE), "]", sep = "")
}
main <- paste("Hue =", main)
rm(tmp)
}
plot(0, 0, type = "n", xlim = c(-1, 1) * maxchroma, ylim = c(0, 100), xaxs = "i", yaxs = "i",
xlab = NA, ylab = NA, main = main, axes = FALSE)
# Axis labels
if(axes) {
if ( is.null(xlab) ) xlab <- "Chroma"
if ( is.null(ylab) ) ylab <- "Luminance"
mtext(side = 1, line = 2 * cex, xlab, cex = cex)
mtext(side = 2, line = 2 * cex, ylab, cex = cex)
at1 <- pretty(c(-1, 1) * maxchroma)
axis(1, at = at1, labels = abs(at1))
axis(2)
}
# Plotting colors
points(nd$C, nd$L, col = HCL2, pch = 19, cex = 3)
points( HCL[, "C"] * ifelse(1L:n <= floor(mean(n/2)), -1, 1),
HCL[, "L"], pch = 19, cex = 1.1 * size * cex, type = "p", lwd = 5 * lwd, col = bg)
points( HCL[, "C"] * ifelse(1L:n <= floor(mean(n/2)),-1,1),
HCL[, "L"], pch = 21, bg = x, cex = size * cex, type = "o", lwd = lwd)
box()
},
"qualitative" = {
opar <- par(cex = cex, mar = c(1, 1, 2, 1) * cex, bty = "n", no.readonly = TRUE)
on.exit(par(opar))
nd <- expand.grid(H = 0:180 * 2, C = 0:maxchroma)
if(!is.null(l)) {
nd$L <- l
} else if(n < 3L || diff(range(HCL[, "L"], na.rm = TRUE)) < 10) {
nd$L <- median(HCL[, "L"], na.rm = TRUE)
} else {
m <- lm(L ~ C + H, data = as.data.frame(HCL))
sig <- summary(m)$sigma
if(is.na(sig) || sig > 7.5) warning("cannot approximate L well as a linear function of H and C")
nd$L <- predict(m, nd)
nd$L <- pmin(100, pmax(0, nd$L))
}
# Converting colors to HCL (no fixup), remove low-luminance colors
HCL2 <- hex(polarLUV(H = nd$H, C = nd$C, L = nd$L), fixup = FALSE)
HCL2[nd$L < 1 & nd$C > 0] <- NA
# Auto-generate main title
if(is.null(main)) {
# Reducing 'nd' to valid colors (!is.na(HCL2))
tmp <- nd[!is.na(HCL2), ]; tmp$L <- round(tmp$L)
main <- if (length(unique(tmp$L)) <= 1L) {
tmp$L[1L]
} else {
paste("[", min(tmp$L, na.rm = TRUE), ", ", max(tmp$L, na.rm = TRUE), "]", sep = "")
}
main <- paste("Luminance =", main)
rm(tmp)
}
# fact: used for scaling
fact <- 1.1 + (cex - 1) / 10
plot(0, 0, type = "n", axes = FALSE, xlab = NA, ylab = NA, main = main,
xlim = c(-maxchroma, maxchroma) * fact, ylim = c(-maxchroma, maxchroma) * fact, asp = 1)
xpos <- function(h, c) cos(h * pi/180) * c
ypos <- function(h, c) sin(h * pi/180) * c
points(xpos(nd$H, nd$C), ypos(nd$H, nd$C), col = HCL2, pch = 19, cex = 3)
lines(xpos(0:360, maxchroma), ypos(0:360, maxchroma))
if(axes) {
if(is.null(xlab)) xlab <- "Chroma"
if(is.null(ylab)) ylab <- "Hue"
at.c <- if(maxchroma >= 150) 0:3 * 50 else 0:3 * 25
at.h <- 0:6 * 60
lines(c(0, maxchroma), c(0, 0))
text(at.c, rep(-7, length(at.c)), at.c)
text(50, -14, xlab)
rect(at.c, 0, at.c, -3)
if(0 %in% at.h | 360 %in% at.h) {
lines(xpos(0, maxchroma + c(0, 3)), ypos(0, maxchroma + c(0, 3)))
text(xpos(0, maxchroma + 7), ypos(0, maxchroma + 7), 0, pos = 3)
text(xpos(0, maxchroma + 7), ypos(0, maxchroma + 7), 360, pos = 1)
text(xpos(0, maxchroma + 16), ypos(0, maxchroma + 16), ylab)
}
at.h <- at.h[at.h > 0 & at.h < 360]
for(hue in at.h) {
text(xpos(hue, maxchroma + 7), ypos(hue, maxchroma + 7), hue)
lines(xpos(hue, maxchroma + c(0, 3)), ypos(hue, maxchroma + c(0, 3)))
}
}
points(xpos(HCL[, "H"], HCL[, "C"]), ypos(HCL[, "H"], HCL[, "C"]),
pch = 19, cex = 1.1 * size * cex, type = "p", lwd = 5 * lwd, col = bg)
points(xpos(HCL[, "H"], HCL[, "C"]), ypos(HCL[, "H"], HCL[, "C"]),
pch = 21, bg = x, cex = size * cex, type = "o", lwd = lwd)
box()
}
)
invisible(HCL)
}
|