File: scale_diverging.R

package info (click to toggle)
r-cran-colorspace 2.1-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,704 kB
  • sloc: ansic: 1,200; sh: 13; makefile: 5
file content (240 lines) | stat: -rw-r--r-- 11,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#' HCL-Based Discrete Diverging Color Scales for ggplot2
#'
#' Discrete ggplot2 color scales using the color palettes generated by \code{\link{diverging_hcl}}. 
#'
#' 
#' If both a valid palette name and palette parameters are provided then the provided palette parameters overwrite the parameters in the
#' named palette. This enables easy customization of named palettes.
#' 
#' @param c1 Chroma value at the scale endpoints.
#' @param cmax Maximum chroma value.
#' @param l1 Luminance value at the scale endpoints.
#' @param l2 Luminance value at the scale midpoint.
#' @param h1 Hue value at the first endpoint.
#' @param h2 Hue value at the second endpoint.
#' @param p1 Control parameter determining how chroma should vary (1 = linear, 2 = quadratic, etc.).
#' @param p2 Control parameter determining how luminance should vary (1 = linear, 2 = quadratic, etc.).
#' @param alpha Numeric vector of values in the range \code{[0, 1]} for alpha transparency channel (0 means transparent and 1 means opaque).
#' @param rev If \code{TRUE}, reverses the order of the colors in the color scale.
#' @param palette The name of the palette to be used. Run \code{hcl_palettes(type = "diverging")} for available options.
#' @param nmax Maximum number of different colors the palette should contain. If not provided, is calculated automatically
#'  from the data.
#' @param order Numeric vector listing the order in which the colors should be used. Default is \code{1:nmax}.
#' @param aesthetics The ggplot2 aesthetics to which this scale should be applied.
#' @param ... common discrete scale parameters: \code{name}, \code{breaks}, \code{labels}, \code{na.value}, \code{limits} and \code{guide}. See
#'  \code{\link[ggplot2]{discrete_scale}} for more details.
#' @examples
#' library("ggplot2")
#' 
#' # default colors with slightly darkened midpoint
#' ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
#'   geom_point() + theme_minimal() + 
#'   scale_color_discrete_diverging(l2=75)
#' 
#' # color scale "Green-Orange"
#' ggplot(iris, aes(Sepal.Length, fill = Species)) +
#'   geom_density(alpha = 0.7) + theme_classic() +
#'     scale_fill_discrete_diverging(palette = "Green-Orange", rev = TRUE)
#'     
#' # use `nmax` and `order` to skip some colors
#' ggplot(iris, aes(Sepal.Length, fill = Species)) +
#'   geom_density(alpha = 0.7) + theme_classic() +
#'     scale_fill_discrete_diverging(palette = "Green-Orange", nmax = 5, order = c(1, 4, 5))
#' @importFrom stats na.omit
#' @export
scale_colour_discrete_diverging <- function(palette = NULL, c1 = NULL, cmax = NULL, l1 = NULL, l2 = NULL,
                                             h1 = NULL, h2 = NULL, p1 = NULL, p2 = NULL, alpha = 1, rev = FALSE,
                                             nmax = NULL, order = NULL, aesthetics = "colour", ...)
{
  # arguments we want to hand off to function diverging_hcl only if explicitly provided
  hcl_args <- c("palette", "c1", "cmax", "l1", "l2", "h1", "h2", "p1", "p2")
  
  # match hcl_args to args provided
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  args <- args[na.omit(match(hcl_args, names(args)))] # remove other args
  for(n in names(args)) args[[n]] <- get(n) # force evaluation of args
  
  pal <- function(n) {
    if (is.null(nmax)) nmax <- n
    if (is.null(order)) order <- 1:n
    
    if (n > nmax) {
      warning("Insufficient values in scale_colour_discrete_diverging. ", n, " needed but only ",
              nmax, " provided.", call. = FALSE)
    }
    # set the remaining arguments and call qualitative_hcl
    args <- c(args, list(n = nmax, alpha = alpha, rev = rev))
    do.call(diverging_hcl, args, envir = parent.frame())[order]
  }
  ggplot2::discrete_scale(aesthetics, "manual", pal, ...)
}

#' @rdname scale_colour_discrete_diverging
#' @export
scale_color_discrete_diverging <- scale_colour_discrete_diverging

#' @rdname scale_colour_discrete_diverging
#' @export
scale_fill_discrete_diverging <- function(..., aesthetics = "fill")
{
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  if (is.null(args[["aesthetics"]])) args$aesthetics <- "fill"
  do.call(scale_colour_discrete_diverging, args, envir = parent.frame())
}

#' HCL-Based Continuous Diverging Color Scales for ggplot2
#'
#' Continuous ggplot2 color scales using the color palettes generated by \code{\link{diverging_hcl}}. 
#'
#' 
#' If both a valid palette name and palette parameters are provided then the provided palette parameters overwrite the parameters in the
#' named palette. This enables easy customization of named palettes.
#' 
#' @inheritParams scale_colour_discrete_diverging
#' @param mid Data value that should be mapped to the mid-point of the diverging color scale.
#' @param na.value Color to be used for missing data points.
#' @param guide Type of legend. Use \code{"colourbar"} for continuous color bar. 
#' @param n_interp Number of discrete colors that should be used to interpolate the continuous color scale.
#'   It is important to use an odd number to capture the color at the midpoint.
#' @param ... common continuous scale parameters: `name`, `breaks`, `labels`, and `limits`. See
#'  \code{\link[ggplot2]{continuous_scale}} for more details.
#' @examples
#' # adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218
#' 
#' library("ggplot2")
#'
#' # generate dataset and base plot
#' set.seed(100)
#' df <- data.frame(country = LETTERS, V = runif(26, -40, 40))
#' df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
#' gg <- ggplot(df, aes(x = country, y = V, fill = V)) +
#'   geom_bar(stat = "identity") +
#'   labs(y = "Under/over valuation in %", x = "Country") +
#'   coord_flip() + theme_minimal()
#'   
#' # plot with default diverging scale
#' gg + scale_fill_continuous_diverging()
#'
#' # plot with alternative scale
#' gg + scale_fill_continuous_diverging(palette = "Purple-Green")
#' 
#' # plot with modified alternative scale
#' gg + scale_fill_continuous_diverging(palette = "Blue-Red 3", l1 = 30, l2 = 100, p1 = .9, p2 = 1.2)
#' @importFrom stats na.omit
#' @export
scale_colour_continuous_diverging <- function(palette = NULL, c1 = NULL, cmax = NULL, l1 = NULL, l2 = NULL,
                                               h1 = NULL, h2 = NULL, p1 = NULL, p2 = NULL, alpha = 1, rev = FALSE,
                                               mid = 0, na.value = "grey50", guide = "colourbar",
                                               n_interp = 11, aesthetics = "colour", ...)
{
  # arguments we want to hand off to function diverging_hcl only if explicitly provided
  hcl_args <- c("palette", "c1", "cmax", "l1", "l2", "h1", "h2", "p1", "p2")
  
  # match hcl_args to args provided
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  args <- args[na.omit(match(hcl_args, names(args)))] # remove other args
  
  # set the remaining arguments and call qualitative_hcl
  args <- c(args, list(n = n_interp, alpha = alpha, rev = rev))
  colors <- do.call(diverging_hcl, args, envir = parent.frame())

  ggplot2::continuous_scale(aesthetics, "continuous_diverging",
                            scales::gradient_n_pal(colors, values = NULL),
                            na.value = na.value, guide = guide,
                            rescaler = mid_rescaler(mid), ...)
}

#' @rdname scale_colour_continuous_diverging
#' @export
scale_color_continuous_diverging <- scale_colour_continuous_diverging

#' @rdname scale_colour_continuous_diverging
#' @export
scale_fill_continuous_diverging <- function(..., aesthetics = "fill")
{
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  if (is.null(args[["aesthetics"]])) args$aesthetics <- "fill"
  do.call(scale_colour_continuous_diverging, args, envir = parent.frame())
}

#' HCL-Based Binned Diverging Color Scales for ggplot2
#'
#' Binned ggplot2 color scales using the color palettes generated by \code{\link{diverging_hcl}}. 
#'
#' 
#' If both a valid palette name and palette parameters are provided then the provided palette parameters overwrite the parameters in the
#' named palette. This enables easy customization of named palettes.
#' 
#' @inheritParams scale_colour_discrete_diverging
#' @param mid Data value that should be mapped to the mid-point of the diverging color scale.
#' @param na.value Color to be used for missing data points.
#' @param guide Type of legend. Use \code{"coloursteps"} for color bar with discrete steps. 
#' @param n_interp Number of discrete colors that should be used to interpolate the binned color scale.
#'   It is important to use an odd number to capture the color at the midpoint.
#' @param ... common continuous scale parameters: `name`, `breaks`, `labels`, and `limits`. See
#'  \code{\link[ggplot2]{binned_scale}} for more details.
#' @examples
#' # adapted from stackoverflow: https://stackoverflow.com/a/20127706/4975218
#' 
#' library("ggplot2")
#'
#' # generate dataset and base plot
#' set.seed(100)
#' df <- data.frame(country = LETTERS, V = runif(26, -40, 40))
#' df$country = factor(LETTERS, LETTERS[order(df$V)]) # reorder factors
#' gg <- ggplot(df, aes(x = country, y = V, fill = V)) +
#'   geom_bar(stat = "identity") +
#'   labs(y = "Under/over valuation in %", x = "Country") +
#'   coord_flip() + theme_minimal()
#'   
#' # plot with default diverging scale
#' gg + scale_fill_binned_diverging(n.breaks = 6)
#' 
#' # plot with alternative scale
#' gg + scale_fill_binned_diverging(palette = "Purple-Green", n.breaks = 6)
#' @importFrom stats na.omit
#' @export
scale_colour_binned_diverging <- function(palette = NULL, c1 = NULL, cmax = NULL, l1 = NULL, l2 = NULL,
                                              h1 = NULL, h2 = NULL, p1 = NULL, p2 = NULL, alpha = 1, rev = FALSE,
                                              mid = 0, na.value = "grey50", guide = "coloursteps",
                                              n_interp = 11, aesthetics = "colour", ...)
{
  # arguments we want to hand off to function diverging_hcl only if explicitly provided
  hcl_args <- c("palette", "c1", "cmax", "l1", "l2", "h1", "h2", "p1", "p2")
  
  # match hcl_args to args provided
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  args <- args[na.omit(match(hcl_args, names(args)))] # remove other args
  
  # set the remaining arguments and call qualitative_hcl
  args <- c(args, list(n = n_interp, alpha = alpha, rev = rev))
  colors <- do.call(diverging_hcl, args, envir = parent.frame())
  
  ggplot2::binned_scale(
    aesthetics,
    "binned_diverging",
    scales::gradient_n_pal(colors, values = NULL),
    na.value = na.value, guide = guide,
    rescaler = mid_rescaler(mid),
    ...
  )
}

#' @rdname scale_colour_binned_diverging
#' @export
scale_color_binned_diverging <- scale_colour_binned_diverging

#' @rdname scale_colour_binned_diverging
#' @export
scale_fill_binned_diverging <- function(..., aesthetics = "fill")
{
  args <- as.list(match.call())
  args[[1]] <- NULL # remove the function call
  if (is.null(args[["aesthetics"]])) args$aesthetics <- "fill"
  do.call(scale_colour_binned_diverging, args, envir = parent.frame())
}