## File: permn.Rd

package info (click to toggle)
r-cran-combinat 0.0-8-7
 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 \name{permn} \alias{permn} %- Also NEED an \alias' for EACH other topic documented here. \title{ Generates all permutations of the elements of x } \description{ Generates all permutations of the elements of x, in a minimal- change order. If x is a positive integer, returns all permutations of the elements of seq(x). If argument "fun" is not null, applies a function given by the argument to each point. "..." are passed unchanged to the function given by argument fun, if any. } \usage{ permn(x, fun=NULL, ...) } %- maybe also usage' for other objects documented here. \arguments{ \item{x}{ vector } \item{fun}{ if non.null, applied at each perm } \item{\dots}{ args passed to fun } } %\details{ %} \value{ list: each component is either a permutation, or the results of applying fun to a permutation } \references{ Reingold, E.M., Nievergelt, J., Deo, N. (1977) Combinatorial Algorithms: Theory and Practice. NJ: Prentice-Hall. pg. 170. } \seealso{ sample, fact, combn, hcube, xsimplex } \examples{ # Convert output to a matrix of dim c(6, 720) t(array(unlist(permn(6)), dim = c(6, gamma(7)))) # A check that every element occurs the same number of times in each # position apply(t(array(unlist(permn(6)), dim = c(6, gamma(7)))), 2, tabulate, nbins = 6) # Apply, on the fly, the diff function to every permutation t(array(unlist(permn(6, diff)), dim = c(5, gamma(7)))) } \keyword{ models }