File: sub_model.Rd

package info (click to toggle)
r-cran-conting 1.7-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 472 kB
  • sloc: makefile: 2
file content (156 lines) | stat: -rwxr-xr-x 5,794 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
\name{sub_model}
\alias{sub_model}

\title{
Compute Posterior Summary Statistics for (Sub-) Models
}

\description{
This function computes posterior summary statistics for (sub-) models 
using the MCMC output of \code{"bcct"} and \code{"bict"} objects. 
}
\usage{
sub_model(object, formula = NULL, order = 1, n.burnin = 0, thin = 1, 
prob.level = 0.95, statistic = "X2")
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{object}{
An object of class \code{"bcct"} or \code{"bict"}.
}
  \item{formula}{
An optional argument of class \code{"formula"}: a symbolic description of the 
model of interest. The default value is \code{NULL}. If not \code{NULL} then 
this argument takes precedent over \code{order}.
}
  \item{order}{
A scalar argument identifying the model for which to compute summary 
statistics. The function will compute statistics for the model with the 
\code{order}-th largest posterior model probability. The default value is 1, 
meaning that, by default, the function will compute summary statistics for 
the posterior modal model.  
}
  \item{n.burnin}{
An optional argument giving the number of iterations to use as burn-in. 
The default value is 0.
}
  \item{thin}{
An optional argument giving the amount of thinning to use, i.e. the computations are 
based on every \code{thin}-th value in the MCMC sample. The default value is 1, i.e. no
thinning.
}
  \item{prob.level}{
An optional argument giving the probability content of the highest posterior density intervals (HPDIs). 
The default value is 0.95.
}
  \item{statistic}{
An optional argument giving the discrepancy statistic to use for calculating the Bayesian p-value. It can be one of 
\code{c("X2","FreemanTukey","deviance")} which correspond to the different statistics: 
\code{"X2"} = Chi-squared statistic, \code{"FreemanTukey"} = Freeman-Tukey statistic, 
\code{"deviance"} = deviance statistic. See Overstall & King (2014), and references 
therein, for descriptions of these statistics.
}
}
\details{
If the MCMC algorithm does not visit the model of interest in the thinned MCMC sample, 
after burn-in, then an error message will be returned.

The use of thinning is recommended when the number of MCMC iterations and/or the number of 
log-linear parameters in the maximal model are/is large, which may cause problems with 
comuter memory storage.
}
\value{
This function will return an object of class \code{"submod"} which is a list with the following 
components. Note that, unless otherwise stated, all components are conditional on the model of 
interest. 

\item{term}{A vector of term labels for each log-linear parameter.}


\item{post_prob}{A scalar giving the posterior model probability for the model of interest.}

\item{post_mean}{A vector of posterior means for each of the log-linear parameters.}

\item{post_var}{A vector of posterior variances for each of the log-linear parameters.}

\item{lower}{A vector of lower limits for the 100*\code{prob.level}\% HPDI for each log-linear parameter.}

\item{upper}{A vector of upper limits for the 100*\code{prob.level}\% HPDI for each log-linear parameter.}

\item{prob.level}{The argument \code{prob.level}.}

\item{order}{The ranking of the model of interest in terms of posterior model probabilities.}

\item{formula}{The formula of the model of interest.}

\item{BETA}{A matrix containing the sampled values of the log-linear parameters, where the 
number of columns is the number of log-linear parameters in the model of interest.} 

\item{SIG}{A vector containing the sampled values of sigma^2 under the Sabanes-Bove & Held 
prior. If the unit information prior is used then the components of this vector will be one.} 

If \code{object} is of class \code{"bict"}, then \code{sub_model} will also return the following 
component.

\item{Y0}{A matrix (with k columns) containing the sampled values of the missing and censored 
cell counts, where k is the total number of missing and censored cell counts.}
}
\references{
Overstall, A.M. & King, R. (2014) conting: An R package for Bayesian analysis of
complete and incomplete contingency tables. \emph{Journal of Statistical Software}, \bold{58 (7)}, 
1--27. \url{http://www.jstatsoft.org/v58/i07/}
}
\author{
Antony M. Overstall \email{A.M.Overstall@soton.ac.uk}.
}

\seealso{
\code{\link{bcct}},
\code{\link{bict}},
}
\examples{
set.seed(1)
## Set seed for reproducibility.

data(AOH)
## Load the AOH data

test1<-bcct(formula=y~(alc+hyp+obe)^3,data=AOH,n.sample=100,prior="UIP")
## Let the maximal model be the saturated model. Starting from the 
## posterior mode of the maximal model do 100 iterations under the unit 
## information prior.

test1sm<-sub_model(object=test1,order=1,n.burnin=10)
## Obtain posterior summary statistics for posterior modal model using a 
## burnin of 10.

test1sm

#Posterior model probability =  0.5
#
#Posterior summary statistics of log-linear parameters:
#            post_mean post_var lower_lim upper_lim
#(Intercept)  2.907059 0.002311   2.81725   2.97185
#alc1        -0.023605 0.004009  -0.20058   0.06655
#alc2        -0.073832 0.005949  -0.22995   0.10845
#alc3         0.062491 0.006252  -0.09635   0.18596
#hyp1        -0.529329 0.002452  -0.63301  -0.43178
#obe1         0.005441 0.004742  -0.12638   0.12031
#obe2        -0.002783 0.004098  -0.17082   0.07727
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95 % highest posterior density intervals, respectively
#
#Under the X2 statistic 
#
#Summary statistics for T_pred 
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#  11.07   19.76   23.34   24.47   29.04   50.37 
#
#Summary statistics for T_obs 
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#  30.82   34.78   35.74   36.28   37.45   42.49 
#
#Bayesian p-value =  0.0444

}