1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
\name{sub_model}
\alias{sub_model}
\title{
Compute Posterior Summary Statistics for (Sub-) Models
}
\description{
This function computes posterior summary statistics for (sub-) models
using the MCMC output of \code{"bcct"} and \code{"bict"} objects.
}
\usage{
sub_model(object, formula = NULL, order = 1, n.burnin = 0, thin = 1,
prob.level = 0.95, statistic = "X2")
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{object}{
An object of class \code{"bcct"} or \code{"bict"}.
}
\item{formula}{
An optional argument of class \code{"formula"}: a symbolic description of the
model of interest. The default value is \code{NULL}. If not \code{NULL} then
this argument takes precedent over \code{order}.
}
\item{order}{
A scalar argument identifying the model for which to compute summary
statistics. The function will compute statistics for the model with the
\code{order}-th largest posterior model probability. The default value is 1,
meaning that, by default, the function will compute summary statistics for
the posterior modal model.
}
\item{n.burnin}{
An optional argument giving the number of iterations to use as burn-in.
The default value is 0.
}
\item{thin}{
An optional argument giving the amount of thinning to use, i.e. the computations are
based on every \code{thin}-th value in the MCMC sample. The default value is 1, i.e. no
thinning.
}
\item{prob.level}{
An optional argument giving the probability content of the highest posterior density intervals (HPDIs).
The default value is 0.95.
}
\item{statistic}{
An optional argument giving the discrepancy statistic to use for calculating the Bayesian p-value. It can be one of
\code{c("X2","FreemanTukey","deviance")} which correspond to the different statistics:
\code{"X2"} = Chi-squared statistic, \code{"FreemanTukey"} = Freeman-Tukey statistic,
\code{"deviance"} = deviance statistic. See Overstall & King (2014), and references
therein, for descriptions of these statistics.
}
}
\details{
If the MCMC algorithm does not visit the model of interest in the thinned MCMC sample,
after burn-in, then an error message will be returned.
The use of thinning is recommended when the number of MCMC iterations and/or the number of
log-linear parameters in the maximal model are/is large, which may cause problems with
comuter memory storage.
}
\value{
This function will return an object of class \code{"submod"} which is a list with the following
components. Note that, unless otherwise stated, all components are conditional on the model of
interest.
\item{term}{A vector of term labels for each log-linear parameter.}
\item{post_prob}{A scalar giving the posterior model probability for the model of interest.}
\item{post_mean}{A vector of posterior means for each of the log-linear parameters.}
\item{post_var}{A vector of posterior variances for each of the log-linear parameters.}
\item{lower}{A vector of lower limits for the 100*\code{prob.level}\% HPDI for each log-linear parameter.}
\item{upper}{A vector of upper limits for the 100*\code{prob.level}\% HPDI for each log-linear parameter.}
\item{prob.level}{The argument \code{prob.level}.}
\item{order}{The ranking of the model of interest in terms of posterior model probabilities.}
\item{formula}{The formula of the model of interest.}
\item{BETA}{A matrix containing the sampled values of the log-linear parameters, where the
number of columns is the number of log-linear parameters in the model of interest.}
\item{SIG}{A vector containing the sampled values of sigma^2 under the Sabanes-Bove & Held
prior. If the unit information prior is used then the components of this vector will be one.}
If \code{object} is of class \code{"bict"}, then \code{sub_model} will also return the following
component.
\item{Y0}{A matrix (with k columns) containing the sampled values of the missing and censored
cell counts, where k is the total number of missing and censored cell counts.}
}
\references{
Overstall, A.M. & King, R. (2014) conting: An R package for Bayesian analysis of
complete and incomplete contingency tables. \emph{Journal of Statistical Software}, \bold{58 (7)},
1--27. \url{http://www.jstatsoft.org/v58/i07/}
}
\author{
Antony M. Overstall \email{A.M.Overstall@soton.ac.uk}.
}
\seealso{
\code{\link{bcct}},
\code{\link{bict}},
}
\examples{
set.seed(1)
## Set seed for reproducibility.
data(AOH)
## Load the AOH data
test1<-bcct(formula=y~(alc+hyp+obe)^3,data=AOH,n.sample=100,prior="UIP")
## Let the maximal model be the saturated model. Starting from the
## posterior mode of the maximal model do 100 iterations under the unit
## information prior.
test1sm<-sub_model(object=test1,order=1,n.burnin=10)
## Obtain posterior summary statistics for posterior modal model using a
## burnin of 10.
test1sm
#Posterior model probability = 0.5
#
#Posterior summary statistics of log-linear parameters:
# post_mean post_var lower_lim upper_lim
#(Intercept) 2.907059 0.002311 2.81725 2.97185
#alc1 -0.023605 0.004009 -0.20058 0.06655
#alc2 -0.073832 0.005949 -0.22995 0.10845
#alc3 0.062491 0.006252 -0.09635 0.18596
#hyp1 -0.529329 0.002452 -0.63301 -0.43178
#obe1 0.005441 0.004742 -0.12638 0.12031
#obe2 -0.002783 0.004098 -0.17082 0.07727
#NB: lower_lim and upper_lim refer to the lower and upper values of the
#95 % highest posterior density intervals, respectively
#
#Under the X2 statistic
#
#Summary statistics for T_pred
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 11.07 19.76 23.34 24.47 29.04 50.37
#
#Summary statistics for T_obs
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 30.82 34.78 35.74 36.28 37.45 42.49
#
#Bayesian p-value = 0.0444
}
|