1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/corrplot.R
\name{corrplot}
\alias{corrplot}
\title{A visualization of a correlation matrix.}
\usage{
corrplot(
corr,
method = c("circle", "square", "ellipse", "number", "shade", "color", "pie"),
type = c("full", "lower", "upper"),
col = NULL,
col.lim = NULL,
is.corr = TRUE,
bg = "white",
title = "",
add = FALSE,
diag = TRUE,
outline = FALSE,
mar = c(0, 0, 0, 0),
addgrid.col = NULL,
addCoef.col = NULL,
addCoefasPercent = FALSE,
order = c("original", "AOE", "FPC", "hclust", "alphabet"),
hclust.method = c("complete", "ward", "ward.D", "ward.D2", "single", "average",
"mcquitty", "median", "centroid"),
addrect = NULL,
rect.col = "black",
rect.lwd = 2,
tl.pos = NULL,
tl.cex = 1,
tl.col = "red",
tl.offset = 0.4,
tl.srt = 90,
cl.pos = NULL,
cl.length = NULL,
cl.cex = 0.8,
cl.ratio = 0.15,
cl.align.text = "c",
cl.offset = 0.5,
number.cex = 1,
number.font = 2,
number.digits = NULL,
addshade = c("negative", "positive", "all"),
shade.lwd = 1,
shade.col = "white",
transKeepSign = TRUE,
p.mat = NULL,
sig.level = 0.05,
insig = c("pch", "p-value", "blank", "n", "label_sig"),
pch = 4,
pch.col = "black",
pch.cex = 3,
plotCI = c("n", "square", "circle", "rect"),
lowCI.mat = NULL,
uppCI.mat = NULL,
na.label = "?",
na.label.col = "black",
win.asp = 1,
...
)
}
\arguments{
\item{corr}{The correlation matrix to visualize, must be square if
\code{order} is not \code{'original'}. For general matrix, please using
\code{is.corr = FALSE} to convert.}
\item{method}{Character, the visualization method of correlation matrix to be
used. Currently, it supports seven methods, named \code{'circle'}
(default), \code{'square'}, \code{'ellipse'}, \code{'number'},
\code{'pie'}, \code{'shade'} and \code{'color'}. See examples for details.
The areas of circles or squares show the absolute value of corresponding
correlation coefficients. Method \code{'pie'} and \code{'shade'} came from
Michael Friendly's job (with some adjustment about the shade added on), and
\code{'ellipse'} came from D.J. Murdoch and E.D. Chow's job, see in section
References.}
\item{type}{Character, \code{'full'} (default), \code{'upper'} or
\code{'lower'}, display full matrix, lower triangular or upper triangular
matrix.}
\item{col}{Vector, the colors of glyphs. They are distributed uniformly in
\code{col.lim} interval.
If \code{is.corr} is \code{TRUE}, the default value will be \code{COL2('RdBu', 200)}.
If \code{is.corr} is \code{FALSE} and \code{corr} is a non-negative or non-positive matrix,
the default value will be \code{COL1('YlOrBr', 200)};
otherwise (elements are partly positive and partly negative),
the default value will be \code{COL2('RdBu', 200)}.}
\item{col.lim}{The limits \code{(x1, x2)} interval for assigning color by
\code{col}. If \code{NULL},
\code{col.lim} will be \code{c(-1, 1)} when \code{is.corr} is \code{TRUE},
\code{col.lim} will be \code{c(min(corr), max(corr))} when \code{is.corr}
is \code{FALSE}
NOTICE: if you set \code{col.lim} when \code{is.corr} is \code{TRUE}, the assigning colors
are still distributed uniformly in [-1, 1], it only affect the display
on color-legend.}
\item{is.corr}{Logical, whether the input matrix is a correlation matrix or
not. We can visualize the non-correlation matrix by setting
\code{is.corr = FALSE}.}
\item{bg}{The background color.}
\item{title}{Character, title of the graph.}
\item{add}{Logical, if \code{TRUE}, the graph is added to an existing plot,
otherwise a new plot will be created.}
\item{diag}{Logical, whether display the correlation coefficients on the
principal diagonal.}
\item{outline}{Logical or character, whether plot outline of circles, square
and ellipse, or the color of these glyphs. For pie, this represents the
color of the circle outlining the pie. If \code{outline} is \code{TRUE},
the default value is \code{'black'}.}
\item{mar}{See \code{\link{par}}.}
\item{addgrid.col}{The color of the grid. If \code{NA}, don't add grid. If
\code{NULL} the default value is chosen. The default value depends on
\code{method}, if \code{method} is \code{color} or \code{shade}, the color
of the grid is \code{NA}, that is, not draw grid; otherwise \code{'grey'}.}
\item{addCoef.col}{Color of coefficients added on the graph. If \code{NULL}
(default), add no coefficients.}
\item{addCoefasPercent}{Logic, whether translate coefficients into percentage
style for spacesaving.}
\item{order}{Character, the ordering method of the correlation matrix.
\itemize{
\item{\code{'original'} for original order (default).}
\item{\code{'AOE'} for the angular order of the eigenvectors.}
\item{\code{'FPC'} for the first principal component order.}
\item{\code{'hclust'} for the hierarchical clustering order.}
\item{\code{'alphabet'} for alphabetical order.}
}
See function \code{\link{corrMatOrder}} for details.}
\item{hclust.method}{Character, the agglomeration method to be used when
\code{order} is \code{\link{hclust}}. This should be one of \code{'ward'},
\code{'ward.D'}, \code{'ward.D2'}, \code{'single'}, \code{'complete'},
\code{'average'}, \code{'mcquitty'}, \code{'median'} or \code{'centroid'}.}
\item{addrect}{Integer, the number of rectangles draws on the graph according
to the hierarchical cluster, only valid when \code{order} is \code{hclust}.
If \code{NULL} (default), then add no rectangles.}
\item{rect.col}{Color for rectangle border(s), only valid when \code{addrect}
is equal or greater than 1.}
\item{rect.lwd}{Numeric, line width for borders for rectangle border(s), only
valid when \code{addrect} is equal or greater than 1.}
\item{tl.pos}{Character or logical, position of text labels. If character, it
must be one of \code{'lt'}, \code{'ld'}, \code{'td'}, \code{'d'} or
\code{'n'}. \code{'lt'}(default if \code{type=='full'}) means left and top,
\code{'ld'}(default if \code{type=='lower'}) means left and diagonal,
\code{'td'}(default if \code{type=='upper'}) means top and diagonal(near),
\code{'l'} means left,
\code{'d'} means diagonal, \code{'n'} means don't add text-label.}
\item{tl.cex}{Numeric, for the size of text label (variable names).}
\item{tl.col}{The color of text label.}
\item{tl.offset}{Numeric, for text label, see \code{\link{text}}.}
\item{tl.srt}{Numeric, for text label string rotation in degrees, see
\code{\link{text}}.}
\item{cl.pos}{Character or logical, position of color-legend; If character,
it must be one of \code{'r'} (default if \code{type=='upper'} or
\code{'full'}), \code{'b'} (default if \code{type=='lower'}) or \code{'n'},
\code{'n'} means don't draw color-legend.}
\item{cl.length}{Integer, the number of number-text in color-legend, passed to
\code{\link{colorlegend}}. If \code{NULL}, \code{cl.length} is
\code{length(col) + 1} when \code{length(col) <=20}; \code{cl.length} is 11
when \code{length(col) > 20}}
\item{cl.cex}{Numeric, text size of number-label in color-legend, passed to
\code{\link{colorlegend}}.}
\item{cl.ratio}{Numeric, to justify the width of color-legend, 0.1~0.2 is
suggested.}
\item{cl.align.text}{Character, \code{'l'}, \code{'c'} (default) or
\code{'r'}, for number-label in color-legend, \code{'l'} means left,
\code{'c'} means center, and \code{'r'} means right.}
\item{cl.offset}{Numeric, for number-label in color-legend, see
\code{\link{text}}.}
\item{number.cex}{The \code{cex} parameter to send to the call to \code{text}
when writing the correlation coefficients into the plot.}
\item{number.font}{the \code{font} parameter to send to the call to
\code{text} when writing the correlation coefficients into the plot.}
\item{number.digits}{indicating the number of decimal digits to be
added into the plot. Non-negative integer or NULL, default NULL.}
\item{addshade}{Character for shade style, \code{'negative'},
\code{'positive'} or \code{'all'}, only valid when \code{method} is
\code{'shade'}. If \code{'all'}, all correlation coefficients' glyph will
be shaded; if \code{'positive'}, only the positive will be shaded; if
\code{'negative'}, only the negative will be shaded. Note: the angle of
shade line is different, 45 degrees for positive and 135 degrees for
negative.}
\item{shade.lwd}{Numeric, the line width of shade.}
\item{shade.col}{The color of shade line.}
\item{transKeepSign}{Logical, whether or not to keep matrix values' sign when
transforming non-corr matrix for plotting.
Only valid when \code{is.corr = FALSE}. The default value is \code{TRUE}.
NOTE: If \code{FALSE},the non-corr matrix will be}
\item{p.mat}{Matrix of p-value, if \code{NULL}, parameter \code{sig.level},
\code{insig}, \code{pch}, \code{pch.col}, \code{pch.cex} are invalid.}
\item{sig.level}{Significant level, if the p-value in \code{p-mat} is bigger
than \code{sig.level}, then the corresponding correlation coefficient is
regarded as insignificant. If \code{insig} is \code{'label_sig'}, this may
be an increasing vector of significance levels, in which case \code{pch}
will be used once for the highest p-value interval and multiple times
(e.g. '*', '**', '***') for each lower p-value interval.}
\item{insig}{Character, specialized insignificant correlation coefficients,
\code{'pch'} (default), \code{'p-value'}, \code{'blank'}, \code{'n'}, or
\code{'label_sig'}. If \code{'blank'}, wipe away the corresponding glyphs;
if \code{'p-value'}, add p-values the corresponding glyphs;
if \code{'pch'}, add characters (see \code{pch} for details) on
corresponding glyphs; if \code{'n'}, don't take any measures; if
\code{'label_sig'}, mark significant correlations with pch
(see \code{sig.level}).}
\item{pch}{Add character on the glyphs of insignificant correlation
coefficients(only valid when \code{insig} is \code{'pch'}). See
\code{\link{par}}.}
\item{pch.col}{The color of pch (only valid when \code{insig} is
\code{'pch'}).}
\item{pch.cex}{The cex of pch (only valid when \code{insig} is \code{'pch'}).}
\item{plotCI}{Character, method of ploting confidence interval. If
\code{'n'}, don't plot confidence interval. If 'rect', plot rectangles
whose upper side means upper bound and lower side means lower bound,
respectively. If 'circle', first plot a circle with the bigger absolute
bound, and then plot the smaller. Warning: if the two bounds are the same
sign, the smaller circle will be wiped away, thus forming a ring. Method
'square' is similar to 'circle'.}
\item{lowCI.mat}{Matrix of the lower bound of confidence interval.}
\item{uppCI.mat}{Matrix of the upper bound of confidence interval.}
\item{na.label}{Label to be used for rendering \code{NA} cells. Default is
\code{'?'}. If 'square', then the cell is rendered as a square with the
\code{na.label.col} color.}
\item{na.label.col}{Color used for rendering \code{NA} cells. Default is
\code{'black'}.}
\item{win.asp}{Aspect ration for the whole plot. Value other than 1 is
currently compatible only with methods 'circle' and 'square'.}
\item{\dots}{Additional arguments passing to function \code{text} for drawing
text label.}
}
\value{
(Invisibly) returns a \code{list(corr, corrTrans, arg)}.
\code{corr} is a reordered correlation matrix for plotting.
\code{corrPos} is a data frame with \code{xName, yName, x, y, corr} and
\code{p.value}(if p.mat is not NULL)
column, which x and y are the position on the correlation matrix plot.
\code{arg} is a list of some corrplot() input parameters' value.
Now \code{type} is in.
}
\description{
A graphical display of a correlation matrix, confidence interval. The details
are paid great attention to. It can also visualize a general matrix by
setting \code{is.corr = FALSE}.
}
\details{
\code{corrplot} function offers flexible ways to visualize
correlation matrix, lower and upper bound of confidence interval matrix.
}
\note{
\code{Cairo} and \code{cairoDevice} packages is strongly recommended to
produce high-quality PNG, JPEG, TIFF bitmap files, especially for that
\code{method} \code{circle}, \code{ellipse}.
Row- and column names of the input matrix are used as labels rendered
in the corrplot. Plothmath expressions will be used if the name is prefixed
by one of the following characters: \code{:}, \code{=} or \code{$}.
For example \code{':alpha + beta'}.
}
\examples{
data(mtcars)
M = cor(mtcars)
set.seed(0)
## different color series
## COL2: Get diverging colors
## c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')
## COL1: Get sequential colors
## c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd', 'YlOrRd', 'YlOrBr', 'YlGn')
wb = c('white', 'black')
par(ask = TRUE)
## different color scale and methods to display corr-matrix
corrplot(M, method = 'number', col = 'black', cl.pos = 'n')
corrplot(M, method = 'number')
corrplot(M)
corrplot(M, order = 'AOE')
corrplot(M, order = 'AOE', addCoef.col = 'grey')
corrplot(M, order = 'AOE', cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2(n=10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PiYG'))
corrplot(M, order = 'AOE', col = COL2('PRGn'), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 20), cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 100))
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 10))
corrplot(M, method = 'color', col = COL2(n=20), cl.length = 21, order = 'AOE',
addCoef.col = 'grey')
corrplot(M, method = 'square', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'ellipse', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'shade', col = COL2(n=20), order = 'AOE')
corrplot(M, method = 'pie', order = 'AOE')
## col = wb
corrplot(M, col = wb, order = 'AOE', outline = TRUE, cl.pos = 'n')
## like Chinese wiqi, suit for either on screen or white-black print.
corrplot(M, col = wb, bg = 'gold2', order = 'AOE', cl.pos = 'n')
## mixed methods: It's more efficient if using function 'corrplot.mixed'
## circle + ellipse
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'ellipse', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + square
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'square', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + colorful number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + black number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'tp')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
col = 'black', diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## order is hclust and draw rectangles
corrplot(M, order = 'hclust')
corrplot(M, order = 'hclust', addrect = 2)
corrplot(M, order = 'hclust', addrect = 3, rect.col = 'red')
corrplot(M, order = 'hclust', addrect = 4, rect.col = 'blue')
corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 4)
## visualize a matrix in [0, 1]
corrplot(abs(M), order = 'AOE', col.lim = c(0, 1))
corrplot(abs(M), order = 'AOE', is.corr = FALSE, col.lim = c(0, 1))
# when is.corr=TRUE, col.lim only affect the color legend
# If you change it, the color is still assigned on [-1, 1]
corrplot(M/2)
corrplot(M/2, col.lim = c(-0.5, 0.5))
# when is.corr=FALSE, col.lim is also used to assign colors
# if the matrix have both positive and negative values
# the matrix transformation keep every values positive and negative
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2))
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 2)
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 4)
## 0.5~0.6
corrplot(abs(M)/10+0.5, col = COL1('Greens', 10))
corrplot(abs(M)/10+0.5, is.corr = FALSE, col.lim = c(0.5, 0.6), col = COL1('YlGn', 10))
## visualize a matrix in [-100, 100]
ran = round(matrix(runif(225, -100, 100), 15))
corrplot(ran, is.corr = FALSE)
corrplot(ran, is.corr = FALSE, col.lim = c(-100, 100))
## visualize a matrix in [100, 300]
ran2 = ran + 200
# bad color, not suitable for a matrix in [100, 300]
corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL2(, 100))
# good color
corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL1(, 100))
## text-labels and plot type
corrplot(M, order = 'AOE', tl.srt = 45)
corrplot(M, order = 'AOE', tl.srt = 60)
corrplot(M, order = 'AOE', tl.pos = 'd', cl.pos = 'n')
corrplot(M, order = 'AOE', diag = FALSE, tl.pos = 'd')
corrplot(M, order = 'AOE', type = 'upper')
corrplot(M, order = 'AOE', type = 'upper', diag = FALSE)
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b')
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b', diag = FALSE)
#### color-legend
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'l')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'c')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'r')
corrplot(M, order = 'AOE', cl.pos = 'b')
corrplot(M, order = 'AOE', cl.pos = 'b', tl.pos = 'd')
corrplot(M, order = 'AOE', cl.pos = 'n')
## deal with missing Values
M2 = M
diag(M2) = NA
corrplot(M2)
corrplot(M2, na.label = 'o')
corrplot(M2, na.label = 'NA')
##the input matrix is not square
corrplot(M[1:8, ])
corrplot(M[, 1:8])
testRes = cor.mtest(mtcars, conf.level = 0.95)
## specialized the insignificant value according to the significant level
corrplot(M, p.mat = testRes$p, sig.level = 0.05, order = 'hclust', addrect = 2)
## leave blank on no significant coefficient
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig ='blank',
addCoef.col ='black', number.cex = 0.8, order = 'AOE', diag = FALSE)
## add p-values on no significant coefficients
corrplot(M, p.mat = testRes$p, insig = 'p-value')
## add all p-values
corrplot(M, p.mat = testRes$p, insig = 'p-value', sig.level = -1)
## add significant level stars
corrplot(M, p.mat = testRes$p, method = 'color', diag = FALSE, type = 'upper',
sig.level = c(0.001, 0.01, 0.05), pch.cex = 0.9,
insig = 'label_sig', pch.col = 'grey20', order = 'AOE')
## add significant level stars and cluster rectangles
corrplot(M, p.mat = testRes$p, tl.pos = 'd', order = 'hclust', addrect = 2,
insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
pch.cex = 0.9, pch.col = 'grey20')
# Visualize confidence interval
corrplot(M, lowCI = testRes$lowCI, uppCI = testRes$uppCI, order = 'hclust',
tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
# Visualize confidence interval and cross the significant coefficients
corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
addrect = 3, rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
res1 = cor.mtest(mtcars, conf.level = 0.95)
res2 = cor.mtest(mtcars, conf.level = 0.99)
## plot confidence interval(0.95), 'circle' method
corrplot(M, low = res1$uppCI, upp = res1$uppCI,
plotCI = 'circle', addg = 'grey20', cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
plotCI = 'circle', addg = 'grey20', cl.pos = 'n')
corrplot(M, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'circle', cl.pos = 'n', pch.col = 'red')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'circle', cl.pos = 'n', pch.col = 'red')
## plot confidence interval(0.95), 'square' method
corrplot(M, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'square', addg = NULL, cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE', pch.col = 'red',
plotCI = 'square', addg = NULL, cl.pos = 'n')
## plot confidence interval0.95, 0.95, 0.99, 'rect' method
corrplot(M, low = res1$lowCI, upp = res1$uppCI, order = 'hclust',
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
order = 'hclust', pch.col = 'red', sig.level = 0.05, addrect = 3,
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
corrplot(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
order = 'hclust', pch.col = 'red', sig.level = 0.01, addrect = 3,
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
## an animation of changing confidence interval in different significance level
## begin.animaton
par(ask = FALSE)
for (i in seq(0.1, 0, -0.005)) {
tmp = cor.mtest(mtcars, conf.level = 1 - i)
corrplot(M, p.mat = tmp$p, low = tmp$lowCI, upp = tmp$uppCI, order = 'hclust',
pch.col = 'red', sig.level = i, plotCI = 'rect', cl.pos = 'n',
mar = c(0, 0, 1, 0),
title = substitute(alpha == x,
list(x = format(i, digits = 3, nsmall = 3))))
Sys.sleep(0.15)
}
## end.animaton
}
\references{
Michael Friendly (2002).
\emph{Corrgrams: Exploratory displays for correlation matrices}.
The American Statistician, 56, 316--324.
D.J. Murdoch, E.D. Chow (1996).
\emph{A graphical display of large correlation matrices}.
The American Statistician, 50, 178--180.
}
\seealso{
Function \code{plotcorr} in the \code{ellipse} package and
\code{corrgram} in the \code{corrgram} package have some similarities.
Package \code{seriation} offered more methods to reorder matrices, such as
ARSA, BBURCG, BBWRCG, MDS, TSP, Chen and so forth.
}
\author{
Taiyun Wei (weitaiyun@gmail.com)
Viliam Simko (viliam.simko@gmail.com)
Michael Levy (michael.levy@healthcatalyst.com)
}
|