File: corrplot-intro.Rmd

package info (click to toggle)
r-cran-corrplot 0.95-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,212 kB
  • sloc: sh: 13; makefile: 5
file content (531 lines) | stat: -rw-r--r-- 20,198 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
---
title: 'An Introduction to corrplot Package'
author: 'Taiyun Wei, Viliam Simko'
date: '`r Sys.Date()`'
output:
  prettydoc::html_pretty:
    theme: cayman
    toc: true
toc-title: 'Table of Contents'
vignette: >
  %\VignetteIndexEntry{An Introduction to corrplot Package}
  %\VignetteEncoding{UTF-8}
  %\VignetteEngine{knitr::rmarkdown}
---

```{r setup, include=FALSE}

knitr::opts_chunk$set(
  fig.align = 'center',
  fig.path = 'webimg/',
  fig.width = 7,
  fig.height = 7,
  out.width = '600px',
  dev = 'png')

get_os = function() {
  sysinf = Sys.info()
  if (!is.null(sysinf)) {
    os = sysinf['sysname']
    if (os == 'Darwin')
      os = 'osx'
  } else { ## mystery machine
    os = .Platform$OS.type
    if (grepl('^darwin', R.version$os))
      os = 'osx'
    if (grepl('linux-gnu', R.version$os))
      os = 'linux'
  }
  tolower(os)
}
if(get_os() =='windows' & capabilities('cairo') | all(capabilities(c('cairo', 'X11')))) {
  knitr::opts_chunk$set(dev.args = list(type='cairo'))
}

```

## Introduction

R package **corrplot** provides a visual exploratory tool on correlation matrix that 
supports automatic variable reordering to help detect hidden patterns among variables.

corrplot is very easy to use and provides a rich array of plotting options in 
visualization method, graphic layout, color, legend, text labels, etc. 
It also provides p-values and confidence intervals to help users determine the 
statistical significance of the correlations.


`corrplot()` has about 50 parameters, however the mostly common ones are only a few. 
We can get a correlation matrix plot with only one line of code in most scenes.

The mostly using parameters include `method`, `type`, `order`, `diag`, and etc.

There are seven visualization methods (parameter `method`) in
corrplot package, named `'circle'`, `'square'`, `'ellipse'`,
`'number'`, `'shade'`, `'color'`, `'pie'`. Color intensity of the glyph
is proportional to the correlation coefficients by default color setting. 

- `'circle'` and `'square'`, the **areas** of circles or squares show the
absolute value of corresponding correlation coefficients. 

- `'ellipse'`, the ellipses have their eccentricity parametrically scaled to the correlation value. 
It comes from D.J. Murdoch and E.D. Chow's job, see in section References.

- `'number'`, coefficients numbers with different color. 

- `'color'`, square of equal size with different color.

- `'shade'`, similar to `'color'`, but the negative coefficients glyphs are shaded. 
Method `'pie'` and `'shade'` come from Michael Friendly's job. 

- `'pie'`, the circles are filled clockwise for positive values, anti-clockwise for negative
values. 





`corrplot.mixed()` is a wrapped function for mixed visualization style,
which can set the visual methods of lower and upper triangular
separately.

There are three layout types (parameter `type`): `'full'`, `'upper'` and
`'lower'`.

The correlation matrix can be reordered according to the correlation
matrix coefficients. This is important to identify the hidden structure
and pattern in the matrix.

```{r intro}
library(corrplot)
M = cor(mtcars)
corrplot(M, method = 'number') # colorful number
corrplot(M, method = 'color', order = 'alphabet')
corrplot(M) # by default, method = 'circle'
corrplot(M, order = 'AOE') # after 'AOE' reorder
corrplot(M, method = 'shade', order = 'AOE', diag = FALSE)
corrplot(M, method = 'square', order = 'FPC', type = 'lower', diag = FALSE)
corrplot(M, method = 'ellipse', order = 'AOE', type = 'upper')
corrplot.mixed(M, order = 'AOE')
corrplot.mixed(M, lower = 'shade', upper = 'pie', order = 'hclust')
```

## Reorder a correlation matrix

The details of four `order` algorithms, named `'AOE'`, `'FPC'`,
`'hclust'`, `'alphabet'` are as following.

-   `'AOE'` is for the angular order of the eigenvectors. It is
    calculated from the order of the angles $a_i$,

    $$
    a_i = 
    \begin{cases}
                \arctan (e_{i2}/e_{i1}), & \text{if $e_{i1}>0$;}
                 \newline
                \arctan (e_{i2}/e_{i1}) + \pi, & \text{otherwise.}
    \end{cases}         
    $$

    where $e_1$ and $e_2$ are the largest two eigenvalues of the
    correlation matrix. See [Michael Friendly
    (2002)](http://www.datavis.ca/papers/corrgram.pdf) for details.

-   `'FPC'` for the first principal component order.

-   `'hclust'` for hierarchical clustering order, and `'hclust.method'`
    for the agglomeration method to be used. `'hclust.method'` should be
    one of `'ward'`, `'ward.D'`, `'ward.D2'`, `'single'`, `'complete'`, 
    `'average'`, `'mcquitty'`, `'median'` or `'centroid'`.

-   `'alphabet'` for alphabetical order.


You can also reorder the matrix 'manually' via function
`corrMatOrder()`.

If using `'hclust'`, `corrplot()` can draw rectangles around the plot of
correlation matrix based on the results of hierarchical clustering.

```{r hclust}
corrplot(M, order = 'hclust', addrect = 2)
corrplot(M, method = 'square', diag = FALSE, order = 'hclust',
         addrect = 3, rect.col = 'blue', rect.lwd = 3, tl.pos = 'd')
```

R package **seriation** provides the infrastructure for ordering objects with an 
implementation of several seriation/sequencing/ordination techniques to reorder 
matrices, dissimilarity matrices, and dendrograms. For more information, 
see in section References.

We can reorder the matrix via **seriation** package and then corrplot it. 
Here are some examples.



```{r seriation}
library(seriation)
list_seriation_methods('matrix')
list_seriation_methods('dist')

data(Zoo)
Z = cor(Zoo[, -c(15, 17)])

dist2order = function(corr, method, ...) {
  d_corr = as.dist(1 - corr)
  s = seriate(d_corr, method = method, ...)
  i = get_order(s)
  return(i)
}
```

Methods `'PCA_angle'` and `'HC'` in **seriation**, are same as `'AOE'` and `'hclust'` 
separately in `corrplot()` and `corrMatOrder()`.

Here are some plots after seriation.

```{r seriation-plot}
# Fast Optimal Leaf Ordering for Hierarchical Clustering
i = dist2order(Z, 'OLO')
corrplot(Z[i, i], cl.pos = 'n')

# Quadratic Assignment Problem
i = dist2order(Z, 'QAP_2SUM')
corrplot(Z[i, i], cl.pos = 'n')

# Multidimensional Scaling
i = dist2order(Z, 'MDS_nonmetric')
corrplot(Z[i, i], cl.pos = 'n')

# Simulated annealing
i = dist2order(Z, 'ARSA')
corrplot(Z[i, i], cl.pos = 'n')

# TSP solver
i = dist2order(Z, 'TSP')
corrplot(Z[i, i], cl.pos = 'n')

# Spectral seriation
i = dist2order(Z, 'Spectral')
corrplot(Z[i, i], cl.pos = 'n')
```

`corrRect()` can add rectangles on the plot with three ways(parameter
`index`, `name` and `namesMat`) after `corrplot()`.
We can use pipe operator `*>%` in package `magrittr` with more convenience. 
Since R 4.1.0,  `|>` is supported without extra package.

```{r rectangles}
library(magrittr)

# Rank-two ellipse seriation, use index parameter
i = dist2order(Z, 'R2E')
corrplot(Z[i, i], cl.pos = 'n') %>% corrRect(c(1, 9, 15))

# use name parameter
# Since R 4.1.0, the following one line code works:
# corrplot(M, order = 'AOE') |> corrRect(name = c('gear', 'wt', 'carb'))
corrplot(Z, order = 'AOE') %>%
  corrRect(name = c('tail', 'airborne', 'venomous', 'predator'))


# use namesMat parameter
r = rbind(c('eggs', 'catsize', 'airborne', 'milk'),
          c('catsize', 'eggs', 'milk', 'airborne'))
corrplot(Z, order = 'hclust') %>% corrRect(namesMat = r)
```

## Change color spectra, color-legend and text-legend

We can get sequential and diverging colors from `COL1()` and `COL2()`.
The color palettes are borrowed from `RColorBrewer` package. 

**Notice**: the middle color getting from `COL2()` is fixed to `'#FFFFFF'`(white), 
thus we can visualizing element 0 with white color.

- `COL1()`: Get sequential colors, suitable for visualize a non-negative or 
non-positive matrix (e.g. matrix in [0, 20], or [-100, -10], or [100, 500]). 
- `COL2()`: Get diverging colors, suitable for visualize a matrix which elements 
are partly positive and partly negative (e.g. correlation matrix in [-1, 1], or [-20, 100]).


The colors of the correlation plots can be customized by `col` in `corrplot()`. 
They are distributed uniformly in `col.lim` interval.

- `col`: vector, the colors of glyphs. They are distributed uniformly in `col.lim` interval. By default,
  - If `is.corr` is `TRUE`, `col` will be `COL2('RdBu', 200)`. 
  - If `is.corr` is `FALSE`, 
    - and `corr` is a non-negative or non-positive matrix, `col` will be `COL1('YlOrBr', 200)`;
    - otherwise (elements are partly positive and partly negative), `col` will be `COL2('RdBu', 200)`.
- `col.lim`: the limits (x1, x2) interval for assigning color by `col`. By default,
  - `col.lim` will be `c(-1, 1)` when `is.corr` is `TRUE`, 
  - `col.lim` will be `c(min(corr), max(corr))` when `is.corr` is `FALSE`.
  - **NOTICE**: if you set `col.lim` when `is.corr` is `TRUE`, the assigning colors are still 
  distributed uniformly in [-1, 1], it only affect the display on color-legend.
- `is.corr`: logical, whether the input matrix is a correlation matrix or not. The default value is `TRUE`.
We can visualize a non-correlation matrix by setting `is.corr = FALSE`. 

Here all diverging colors from `COL2()` and sequential colors from `COL1()` are shown below.

**Diverging colors**:

```{r echo=FALSE,  fig.width = 8, fig.height = 6, out.width = '700px'}
## diverging colors
plot.new()
par(mar = c(0, 0, 0, 0) + 0.1)
plot.window(xlim = c(-0.2, 1.1), ylim = c(0, 1), xaxs = 'i', yaxs = 'i')

col = c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')

for(i in 1:length(col)) {
  colorlegend(COL2(col[i]), -10:10/10, align = 'l', cex = 0.8, xlim = c(0, 1),
              ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2, cex = 0.8)
}
```

**Sequential colors**:


```{r echo=FALSE,  fig.width = 8, fig.height = 6, out.width = '700px'}
## sequential colors
plot.new()
par(mar = c(0, 0, 0, 0) + 0.1)
plot.window(xlim = c(-0.2, 1.1), ylim = c(0, 1), xaxs = 'i', yaxs = 'i')

col = c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd',
        'YlOrRd', 'YlOrBr', 'YlGn')

for(i in 1:length(col)) {
  colorlegend(COL1(col[i]), 0:10, align = 'l', cex = 0.8, xlim = c(0, 1),
              ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
  text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2)
}
```

Usage of `COL1()` and `COL2()`:

```{r eval=FALSE}
COL1(sequential = c("Oranges", "Purples", "Reds", "Blues", "Greens", 
                    "Greys", "OrRd", "YlOrRd", "YlOrBr", "YlGn"), n = 200)

COL2(diverging = c("RdBu", "BrBG", "PiYG", "PRGn", "PuOr", "RdYlBu"), n = 200)
```


In addition, function `colorRampPalette()` is very convenient for generating color spectrum. 


Parameters group `cl.*` is for color-legend. The common-using are:

-   `cl.pos` is for the position of color labels. It is character or
    logical. If character, it must be one of `'r'` (means right, default
    if `type='upper'` or `'full'`), `'b'` (means bottom, default if
    `type='lower'`) or `'n'`(means don't draw color-label).
-   `cl.ratio` is to justify the width of color-legend, 0.1\~0.2 is
    suggested.

Parameters group `tl.*` is for text-legend. The common-using are:

-   `tl.pos` is for the position of text labels. It is character or
    logical. If character, it must be one of `'lt'`, `'ld'`, `'td'`,
    `'d'`, `'l'` or `'n'`. `'lt'`(default if `type='full'`) means left and top,
    `'ld'`(default if `type='lower'`) means left and diagonal,
    `'td'`(default if `type='upper'`) means top and diagonal(near),
    `'d'` means diagonal, `'l'` means left, `'n'` means don't add text-label.
-   `tl.cex` is for the size of text label (variable names).
-   `tl.srt` is for text label string rotation in degrees.

```{r color}
corrplot(M, order = 'AOE', col = COL2('RdBu', 10))
         
corrplot(M, order = 'AOE', addCoef.col = 'black', tl.pos = 'd',
         cl.pos = 'n', col = COL2('PiYG'))

corrplot(M, method = 'square', order = 'AOE', addCoef.col = 'black', tl.pos = 'd',
         cl.pos = 'n', col = COL2('BrBG'))

## bottom color legend, diagonal text legend, rotate text label
corrplot(M, order = 'AOE', cl.pos = 'b', tl.pos = 'd',
         col = COL2('PRGn'), diag = FALSE)

## text labels rotated 45 degrees and  wider color legend with numbers right aligned
corrplot(M, type = 'lower', order = 'hclust', tl.col = 'black',
         cl.ratio = 0.2, tl.srt = 45, col = COL2('PuOr', 10))

## remove color legend, text legend and principal diagonal glyph
corrplot(M, order = 'AOE', cl.pos = 'n', tl.pos = 'n',
         col = c('white', 'black'), bg = 'gold2')
```

## Visualize non-correlation matrix, NA value and math label

We can visualize a non-correlation matrix by set `is.corr=FALSE`, and
assign colors by `col.lim`. If the matrix have both positive and
negative values, the matrix transformation keep every values
positiveness and negativeness.

If your matrix is rectangular, you can adjust the aspect ratio with the
`win.asp` parameter to make the matrix rendered as a square.

```{r non-corr}
## matrix in [20, 26], grid.col
N1 = matrix(runif(80, 20, 26), 8)
corrplot(N1, is.corr = FALSE, col.lim = c(20, 30), method = 'color', tl.pos = 'n',
         col = COL1('YlGn'), cl.pos = 'b', addgrid.col = 'white', addCoef.col = 'grey50')


## matrix in [-15, 10]
N2 = matrix(runif(80, -15, 10), 8)

## using sequential colors, transKeepSign = FALSE
corrplot(N2, is.corr = FALSE, transKeepSign = FALSE, method = 'color', col.lim = c(-15, 10), 
         tl.pos = 'n', col = COL1('YlGn'), cl.pos = 'b', addCoef.col = 'grey50')

## using diverging colors, transKeepSign = TRUE (default)
corrplot(N2, is.corr = FALSE, col.lim = c(-15, 10), 
         tl.pos = 'n', col = COL2('PiYG'), cl.pos = 'b', addCoef.col = 'grey50')

## using diverging colors
corrplot(N2, is.corr = FALSE, method = 'color', col.lim = c(-15, 10), tl.pos = 'n',
         col = COL2('PiYG'), cl.pos = 'b', addCoef.col = 'grey50')
```

Notice: when `is.corr` is `TRUE`, `col.lim` only affect the color legend If
you change it, the color on correlation matrix plot is still assigned on
`c(-1, 1)`

```{r col-lim}
# when is.corr=TRUE, col.lim only affect the color legend display
corrplot(M/2)
corrplot(M/2, col.lim=c(-0.5, 0.5))
```

By default, **corrplot** renders NA values as `'?'` characters. Using
`na.label` parameter, it is possible to use a different value (max. two
characters are supported).

Since version `0.78`, it is possible to use
[plotmath](https://www.rdocumentation.org/packages/grDevices/topics/plotmath)
expression in variable names. To activate plotmath rendering, prefix
your label with `'$'`.

```{r NA-math}
M2 = M
diag(M2) = NA
colnames(M2) = rep(c('$alpha+beta', '$alpha[0]', '$alpha[beta]'),
                   c(4, 4, 3))
rownames(M2) = rep(c('$Sigma[i]^n', '$sigma',  '$alpha[0]^100', '$alpha[beta]'),
                   c(2, 4, 2, 3))
corrplot(10*abs(M2), is.corr = FALSE, col.lim = c(0, 10), tl.cex = 1.5)
```

## Visualize p-value and confidence interval

`corrplot()` can also visualize p-value and confidence interval on the
correlation matrix plot. Here are some important parameters.

About p-value:

-   `p.mat` is the p-value matrix, if `NULL`, parameter `sig.level`,
    `insig, pch`, `pch.col`, `pch.cex` are invalid.
-   `sig.level` is significant level, with default value 0.05. If the
    p-value in `p-mat` is bigger than `sig.level`, then the
    corresponding correlation coefficient is regarded as insignificant.
    If `insig` is `'label_sig'`, `sig.level` can be an increasing vector
    of significance levels, in which case `pch` will be used once for
    the highest p-value interval and multiple times (e.g. `'*'`, `'**'`,
    `'***'`) for each lower p-value interval.
-   `insig` Character, specialized insignificant correlation
    coefficients, `'pch'` (default), `'p-value'`, `'blank',` `'n'`, or
    `'label_sig'`. If `'blank'`, wipe away the corresponding glyphs; if
    `'p-value'`, add p-values the corresponding glyphs; if `'pch'`, add
    characters (see pch for details) on corresponding glyphs; if `'n'`,
    don't take any measures; if `'label_sig'`, mark significant
    correlations with `pch` (see `sig.level`).
-   `pch` is for adding character on the glyphs of insignificant
    correlation coefficients (only valid when insig is `'pch'`). See
    `?par` .

About confidence interval:

-   `plotCI` is character for the method of plotting confidence
    interval. If `'n'`, don't plot confidence interval. If `'rect'`,
    plot rectangles whose upper side means upper bound and lower side
    means lower bound respectively.
-   `lowCI.mat` is the matrix of the lower bound of confidence interval.
-   `uppCI.mat` is the Matrix of the upper bound of confidence interval.

We can get p-value matrix and confidence intervals matrix by
`cor.mtest()` which returns a list containing:

-   `p` is the p-values matrix.
-   `lowCI` is the lower bound of confidence interval matrix.
-   `uppCI` is the lower bound of confidence interval matrix.

```{r test}
testRes = cor.mtest(mtcars, conf.level = 0.95)

## specialized the insignificant value according to the significant level
corrplot(M, p.mat = testRes$p, sig.level = 0.10, order = 'hclust', addrect = 2)


## leave blank on non-significant coefficient
## add significant correlation coefficients
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig='blank',
         addCoef.col ='black', number.cex = 0.8, order = 'AOE', diag=FALSE)
```

```{r special}
## leave blank on non-significant coefficient
## add all correlation coefficients
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig='blank',
         order = 'AOE', diag = FALSE)$corrPos -> p1
text(p1$x, p1$y, round(p1$corr, 2))
```

```{r p-values}
## add p-values on no significant coefficients
corrplot(M, p.mat = testRes$p, insig = 'p-value')

## add all p-values
corrplot(M, p.mat = testRes$p, insig = 'p-value', sig.level = -1)

## add significant level stars
corrplot(M, p.mat = testRes$p, method = 'color', diag = FALSE, type = 'upper',
         sig.level = c(0.001, 0.01, 0.05), pch.cex = 0.9,
         insig = 'label_sig', pch.col = 'grey20', order = 'AOE')

## add significant level stars and cluster rectangles
corrplot(M, p.mat = testRes$p, tl.pos = 'd', order = 'hclust', addrect = 2,
         insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
         pch.cex = 0.9, pch.col = 'grey20')
```

Visualize confidence interval.

```{r confidence-interval}
# Visualize confidence interval
corrplot(M, lowCI = testRes$lowCI, uppCI = testRes$uppCI, order = 'hclust',
         tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')

# Visualize confidence interval and cross the significant coefficients
corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
         addrect = 3, rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
```

## References

- Michael Friendly (2002). Corrgrams: Exploratory displays for correlation
matrices. The American Statistician, 56, 316--324.

- D.J. Murdoch, E.D. Chow (1996). A graphical display of large correlation
matrices. The American Statistician, 50, 178--180.

- Michael Hahsler, Christian Buchta and Kurt Hornik (2020). seriation: Infrastructure for Ordering
  Objects Using Seriation. R package version 1.2-9. https://CRAN.R-project.org/package=seriation

- Hahsler M, Hornik K, Buchta C (2008). "Getting things in order: An introduction to the R package
seriation." _Journal of Statistical Software_, *25*(3), 1-34. ISSN 1548-7660, doi:
10.18637/jss.v025.i03 (URL: https://doi.org/10.18637/jss.v025.i03), <URL:
https://www.jstatsoft.org/v25/i03/>.