1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
---
title: 'An Introduction to corrplot Package'
author: 'Taiyun Wei, Viliam Simko'
date: '`r Sys.Date()`'
output:
prettydoc::html_pretty:
theme: cayman
toc: true
toc-title: 'Table of Contents'
vignette: >
%\VignetteIndexEntry{An Introduction to corrplot Package}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
fig.align = 'center',
fig.path = 'webimg/',
fig.width = 7,
fig.height = 7,
out.width = '600px',
dev = 'png')
get_os = function() {
sysinf = Sys.info()
if (!is.null(sysinf)) {
os = sysinf['sysname']
if (os == 'Darwin')
os = 'osx'
} else { ## mystery machine
os = .Platform$OS.type
if (grepl('^darwin', R.version$os))
os = 'osx'
if (grepl('linux-gnu', R.version$os))
os = 'linux'
}
tolower(os)
}
if(get_os() =='windows' & capabilities('cairo') | all(capabilities(c('cairo', 'X11')))) {
knitr::opts_chunk$set(dev.args = list(type='cairo'))
}
```
## Introduction
R package **corrplot** provides a visual exploratory tool on correlation matrix that
supports automatic variable reordering to help detect hidden patterns among variables.
corrplot is very easy to use and provides a rich array of plotting options in
visualization method, graphic layout, color, legend, text labels, etc.
It also provides p-values and confidence intervals to help users determine the
statistical significance of the correlations.
`corrplot()` has about 50 parameters, however the mostly common ones are only a few.
We can get a correlation matrix plot with only one line of code in most scenes.
The mostly using parameters include `method`, `type`, `order`, `diag`, and etc.
There are seven visualization methods (parameter `method`) in
corrplot package, named `'circle'`, `'square'`, `'ellipse'`,
`'number'`, `'shade'`, `'color'`, `'pie'`. Color intensity of the glyph
is proportional to the correlation coefficients by default color setting.
- `'circle'` and `'square'`, the **areas** of circles or squares show the
absolute value of corresponding correlation coefficients.
- `'ellipse'`, the ellipses have their eccentricity parametrically scaled to the correlation value.
It comes from D.J. Murdoch and E.D. Chow's job, see in section References.
- `'number'`, coefficients numbers with different color.
- `'color'`, square of equal size with different color.
- `'shade'`, similar to `'color'`, but the negative coefficients glyphs are shaded.
Method `'pie'` and `'shade'` come from Michael Friendly's job.
- `'pie'`, the circles are filled clockwise for positive values, anti-clockwise for negative
values.
`corrplot.mixed()` is a wrapped function for mixed visualization style,
which can set the visual methods of lower and upper triangular
separately.
There are three layout types (parameter `type`): `'full'`, `'upper'` and
`'lower'`.
The correlation matrix can be reordered according to the correlation
matrix coefficients. This is important to identify the hidden structure
and pattern in the matrix.
```{r intro}
library(corrplot)
M = cor(mtcars)
corrplot(M, method = 'number') # colorful number
corrplot(M, method = 'color', order = 'alphabet')
corrplot(M) # by default, method = 'circle'
corrplot(M, order = 'AOE') # after 'AOE' reorder
corrplot(M, method = 'shade', order = 'AOE', diag = FALSE)
corrplot(M, method = 'square', order = 'FPC', type = 'lower', diag = FALSE)
corrplot(M, method = 'ellipse', order = 'AOE', type = 'upper')
corrplot.mixed(M, order = 'AOE')
corrplot.mixed(M, lower = 'shade', upper = 'pie', order = 'hclust')
```
## Reorder a correlation matrix
The details of four `order` algorithms, named `'AOE'`, `'FPC'`,
`'hclust'`, `'alphabet'` are as following.
- `'AOE'` is for the angular order of the eigenvectors. It is
calculated from the order of the angles $a_i$,
$$
a_i =
\begin{cases}
\arctan (e_{i2}/e_{i1}), & \text{if $e_{i1}>0$;}
\newline
\arctan (e_{i2}/e_{i1}) + \pi, & \text{otherwise.}
\end{cases}
$$
where $e_1$ and $e_2$ are the largest two eigenvalues of the
correlation matrix. See [Michael Friendly
(2002)](http://www.datavis.ca/papers/corrgram.pdf) for details.
- `'FPC'` for the first principal component order.
- `'hclust'` for hierarchical clustering order, and `'hclust.method'`
for the agglomeration method to be used. `'hclust.method'` should be
one of `'ward'`, `'ward.D'`, `'ward.D2'`, `'single'`, `'complete'`,
`'average'`, `'mcquitty'`, `'median'` or `'centroid'`.
- `'alphabet'` for alphabetical order.
You can also reorder the matrix 'manually' via function
`corrMatOrder()`.
If using `'hclust'`, `corrplot()` can draw rectangles around the plot of
correlation matrix based on the results of hierarchical clustering.
```{r hclust}
corrplot(M, order = 'hclust', addrect = 2)
corrplot(M, method = 'square', diag = FALSE, order = 'hclust',
addrect = 3, rect.col = 'blue', rect.lwd = 3, tl.pos = 'd')
```
R package **seriation** provides the infrastructure for ordering objects with an
implementation of several seriation/sequencing/ordination techniques to reorder
matrices, dissimilarity matrices, and dendrograms. For more information,
see in section References.
We can reorder the matrix via **seriation** package and then corrplot it.
Here are some examples.
```{r seriation}
library(seriation)
list_seriation_methods('matrix')
list_seriation_methods('dist')
data(Zoo)
Z = cor(Zoo[, -c(15, 17)])
dist2order = function(corr, method, ...) {
d_corr = as.dist(1 - corr)
s = seriate(d_corr, method = method, ...)
i = get_order(s)
return(i)
}
```
Methods `'PCA_angle'` and `'HC'` in **seriation**, are same as `'AOE'` and `'hclust'`
separately in `corrplot()` and `corrMatOrder()`.
Here are some plots after seriation.
```{r seriation-plot}
# Fast Optimal Leaf Ordering for Hierarchical Clustering
i = dist2order(Z, 'OLO')
corrplot(Z[i, i], cl.pos = 'n')
# Quadratic Assignment Problem
i = dist2order(Z, 'QAP_2SUM')
corrplot(Z[i, i], cl.pos = 'n')
# Multidimensional Scaling
i = dist2order(Z, 'MDS_nonmetric')
corrplot(Z[i, i], cl.pos = 'n')
# Simulated annealing
i = dist2order(Z, 'ARSA')
corrplot(Z[i, i], cl.pos = 'n')
# TSP solver
i = dist2order(Z, 'TSP')
corrplot(Z[i, i], cl.pos = 'n')
# Spectral seriation
i = dist2order(Z, 'Spectral')
corrplot(Z[i, i], cl.pos = 'n')
```
`corrRect()` can add rectangles on the plot with three ways(parameter
`index`, `name` and `namesMat`) after `corrplot()`.
We can use pipe operator `*>%` in package `magrittr` with more convenience.
Since R 4.1.0, `|>` is supported without extra package.
```{r rectangles}
library(magrittr)
# Rank-two ellipse seriation, use index parameter
i = dist2order(Z, 'R2E')
corrplot(Z[i, i], cl.pos = 'n') %>% corrRect(c(1, 9, 15))
# use name parameter
# Since R 4.1.0, the following one line code works:
# corrplot(M, order = 'AOE') |> corrRect(name = c('gear', 'wt', 'carb'))
corrplot(Z, order = 'AOE') %>%
corrRect(name = c('tail', 'airborne', 'venomous', 'predator'))
# use namesMat parameter
r = rbind(c('eggs', 'catsize', 'airborne', 'milk'),
c('catsize', 'eggs', 'milk', 'airborne'))
corrplot(Z, order = 'hclust') %>% corrRect(namesMat = r)
```
## Change color spectra, color-legend and text-legend
We can get sequential and diverging colors from `COL1()` and `COL2()`.
The color palettes are borrowed from `RColorBrewer` package.
**Notice**: the middle color getting from `COL2()` is fixed to `'#FFFFFF'`(white),
thus we can visualizing element 0 with white color.
- `COL1()`: Get sequential colors, suitable for visualize a non-negative or
non-positive matrix (e.g. matrix in [0, 20], or [-100, -10], or [100, 500]).
- `COL2()`: Get diverging colors, suitable for visualize a matrix which elements
are partly positive and partly negative (e.g. correlation matrix in [-1, 1], or [-20, 100]).
The colors of the correlation plots can be customized by `col` in `corrplot()`.
They are distributed uniformly in `col.lim` interval.
- `col`: vector, the colors of glyphs. They are distributed uniformly in `col.lim` interval. By default,
- If `is.corr` is `TRUE`, `col` will be `COL2('RdBu', 200)`.
- If `is.corr` is `FALSE`,
- and `corr` is a non-negative or non-positive matrix, `col` will be `COL1('YlOrBr', 200)`;
- otherwise (elements are partly positive and partly negative), `col` will be `COL2('RdBu', 200)`.
- `col.lim`: the limits (x1, x2) interval for assigning color by `col`. By default,
- `col.lim` will be `c(-1, 1)` when `is.corr` is `TRUE`,
- `col.lim` will be `c(min(corr), max(corr))` when `is.corr` is `FALSE`.
- **NOTICE**: if you set `col.lim` when `is.corr` is `TRUE`, the assigning colors are still
distributed uniformly in [-1, 1], it only affect the display on color-legend.
- `is.corr`: logical, whether the input matrix is a correlation matrix or not. The default value is `TRUE`.
We can visualize a non-correlation matrix by setting `is.corr = FALSE`.
Here all diverging colors from `COL2()` and sequential colors from `COL1()` are shown below.
**Diverging colors**:
```{r echo=FALSE, fig.width = 8, fig.height = 6, out.width = '700px'}
## diverging colors
plot.new()
par(mar = c(0, 0, 0, 0) + 0.1)
plot.window(xlim = c(-0.2, 1.1), ylim = c(0, 1), xaxs = 'i', yaxs = 'i')
col = c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')
for(i in 1:length(col)) {
colorlegend(COL2(col[i]), -10:10/10, align = 'l', cex = 0.8, xlim = c(0, 1),
ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2, cex = 0.8)
}
```
**Sequential colors**:
```{r echo=FALSE, fig.width = 8, fig.height = 6, out.width = '700px'}
## sequential colors
plot.new()
par(mar = c(0, 0, 0, 0) + 0.1)
plot.window(xlim = c(-0.2, 1.1), ylim = c(0, 1), xaxs = 'i', yaxs = 'i')
col = c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd',
'YlOrRd', 'YlOrBr', 'YlGn')
for(i in 1:length(col)) {
colorlegend(COL1(col[i]), 0:10, align = 'l', cex = 0.8, xlim = c(0, 1),
ylim = c(i/length(col)-0.1, i/length(col)), vertical = FALSE)
text(-0.01, i/length(col)-0.02, col[i], adj = 0.5, pos = 2)
}
```
Usage of `COL1()` and `COL2()`:
```{r eval=FALSE}
COL1(sequential = c("Oranges", "Purples", "Reds", "Blues", "Greens",
"Greys", "OrRd", "YlOrRd", "YlOrBr", "YlGn"), n = 200)
COL2(diverging = c("RdBu", "BrBG", "PiYG", "PRGn", "PuOr", "RdYlBu"), n = 200)
```
In addition, function `colorRampPalette()` is very convenient for generating color spectrum.
Parameters group `cl.*` is for color-legend. The common-using are:
- `cl.pos` is for the position of color labels. It is character or
logical. If character, it must be one of `'r'` (means right, default
if `type='upper'` or `'full'`), `'b'` (means bottom, default if
`type='lower'`) or `'n'`(means don't draw color-label).
- `cl.ratio` is to justify the width of color-legend, 0.1\~0.2 is
suggested.
Parameters group `tl.*` is for text-legend. The common-using are:
- `tl.pos` is for the position of text labels. It is character or
logical. If character, it must be one of `'lt'`, `'ld'`, `'td'`,
`'d'`, `'l'` or `'n'`. `'lt'`(default if `type='full'`) means left and top,
`'ld'`(default if `type='lower'`) means left and diagonal,
`'td'`(default if `type='upper'`) means top and diagonal(near),
`'d'` means diagonal, `'l'` means left, `'n'` means don't add text-label.
- `tl.cex` is for the size of text label (variable names).
- `tl.srt` is for text label string rotation in degrees.
```{r color}
corrplot(M, order = 'AOE', col = COL2('RdBu', 10))
corrplot(M, order = 'AOE', addCoef.col = 'black', tl.pos = 'd',
cl.pos = 'n', col = COL2('PiYG'))
corrplot(M, method = 'square', order = 'AOE', addCoef.col = 'black', tl.pos = 'd',
cl.pos = 'n', col = COL2('BrBG'))
## bottom color legend, diagonal text legend, rotate text label
corrplot(M, order = 'AOE', cl.pos = 'b', tl.pos = 'd',
col = COL2('PRGn'), diag = FALSE)
## text labels rotated 45 degrees and wider color legend with numbers right aligned
corrplot(M, type = 'lower', order = 'hclust', tl.col = 'black',
cl.ratio = 0.2, tl.srt = 45, col = COL2('PuOr', 10))
## remove color legend, text legend and principal diagonal glyph
corrplot(M, order = 'AOE', cl.pos = 'n', tl.pos = 'n',
col = c('white', 'black'), bg = 'gold2')
```
## Visualize non-correlation matrix, NA value and math label
We can visualize a non-correlation matrix by set `is.corr=FALSE`, and
assign colors by `col.lim`. If the matrix have both positive and
negative values, the matrix transformation keep every values
positiveness and negativeness.
If your matrix is rectangular, you can adjust the aspect ratio with the
`win.asp` parameter to make the matrix rendered as a square.
```{r non-corr}
## matrix in [20, 26], grid.col
N1 = matrix(runif(80, 20, 26), 8)
corrplot(N1, is.corr = FALSE, col.lim = c(20, 30), method = 'color', tl.pos = 'n',
col = COL1('YlGn'), cl.pos = 'b', addgrid.col = 'white', addCoef.col = 'grey50')
## matrix in [-15, 10]
N2 = matrix(runif(80, -15, 10), 8)
## using sequential colors, transKeepSign = FALSE
corrplot(N2, is.corr = FALSE, transKeepSign = FALSE, method = 'color', col.lim = c(-15, 10),
tl.pos = 'n', col = COL1('YlGn'), cl.pos = 'b', addCoef.col = 'grey50')
## using diverging colors, transKeepSign = TRUE (default)
corrplot(N2, is.corr = FALSE, col.lim = c(-15, 10),
tl.pos = 'n', col = COL2('PiYG'), cl.pos = 'b', addCoef.col = 'grey50')
## using diverging colors
corrplot(N2, is.corr = FALSE, method = 'color', col.lim = c(-15, 10), tl.pos = 'n',
col = COL2('PiYG'), cl.pos = 'b', addCoef.col = 'grey50')
```
Notice: when `is.corr` is `TRUE`, `col.lim` only affect the color legend If
you change it, the color on correlation matrix plot is still assigned on
`c(-1, 1)`
```{r col-lim}
# when is.corr=TRUE, col.lim only affect the color legend display
corrplot(M/2)
corrplot(M/2, col.lim=c(-0.5, 0.5))
```
By default, **corrplot** renders NA values as `'?'` characters. Using
`na.label` parameter, it is possible to use a different value (max. two
characters are supported).
Since version `0.78`, it is possible to use
[plotmath](https://www.rdocumentation.org/packages/grDevices/topics/plotmath)
expression in variable names. To activate plotmath rendering, prefix
your label with `'$'`.
```{r NA-math}
M2 = M
diag(M2) = NA
colnames(M2) = rep(c('$alpha+beta', '$alpha[0]', '$alpha[beta]'),
c(4, 4, 3))
rownames(M2) = rep(c('$Sigma[i]^n', '$sigma', '$alpha[0]^100', '$alpha[beta]'),
c(2, 4, 2, 3))
corrplot(10*abs(M2), is.corr = FALSE, col.lim = c(0, 10), tl.cex = 1.5)
```
## Visualize p-value and confidence interval
`corrplot()` can also visualize p-value and confidence interval on the
correlation matrix plot. Here are some important parameters.
About p-value:
- `p.mat` is the p-value matrix, if `NULL`, parameter `sig.level`,
`insig, pch`, `pch.col`, `pch.cex` are invalid.
- `sig.level` is significant level, with default value 0.05. If the
p-value in `p-mat` is bigger than `sig.level`, then the
corresponding correlation coefficient is regarded as insignificant.
If `insig` is `'label_sig'`, `sig.level` can be an increasing vector
of significance levels, in which case `pch` will be used once for
the highest p-value interval and multiple times (e.g. `'*'`, `'**'`,
`'***'`) for each lower p-value interval.
- `insig` Character, specialized insignificant correlation
coefficients, `'pch'` (default), `'p-value'`, `'blank',` `'n'`, or
`'label_sig'`. If `'blank'`, wipe away the corresponding glyphs; if
`'p-value'`, add p-values the corresponding glyphs; if `'pch'`, add
characters (see pch for details) on corresponding glyphs; if `'n'`,
don't take any measures; if `'label_sig'`, mark significant
correlations with `pch` (see `sig.level`).
- `pch` is for adding character on the glyphs of insignificant
correlation coefficients (only valid when insig is `'pch'`). See
`?par` .
About confidence interval:
- `plotCI` is character for the method of plotting confidence
interval. If `'n'`, don't plot confidence interval. If `'rect'`,
plot rectangles whose upper side means upper bound and lower side
means lower bound respectively.
- `lowCI.mat` is the matrix of the lower bound of confidence interval.
- `uppCI.mat` is the Matrix of the upper bound of confidence interval.
We can get p-value matrix and confidence intervals matrix by
`cor.mtest()` which returns a list containing:
- `p` is the p-values matrix.
- `lowCI` is the lower bound of confidence interval matrix.
- `uppCI` is the lower bound of confidence interval matrix.
```{r test}
testRes = cor.mtest(mtcars, conf.level = 0.95)
## specialized the insignificant value according to the significant level
corrplot(M, p.mat = testRes$p, sig.level = 0.10, order = 'hclust', addrect = 2)
## leave blank on non-significant coefficient
## add significant correlation coefficients
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig='blank',
addCoef.col ='black', number.cex = 0.8, order = 'AOE', diag=FALSE)
```
```{r special}
## leave blank on non-significant coefficient
## add all correlation coefficients
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig='blank',
order = 'AOE', diag = FALSE)$corrPos -> p1
text(p1$x, p1$y, round(p1$corr, 2))
```
```{r p-values}
## add p-values on no significant coefficients
corrplot(M, p.mat = testRes$p, insig = 'p-value')
## add all p-values
corrplot(M, p.mat = testRes$p, insig = 'p-value', sig.level = -1)
## add significant level stars
corrplot(M, p.mat = testRes$p, method = 'color', diag = FALSE, type = 'upper',
sig.level = c(0.001, 0.01, 0.05), pch.cex = 0.9,
insig = 'label_sig', pch.col = 'grey20', order = 'AOE')
## add significant level stars and cluster rectangles
corrplot(M, p.mat = testRes$p, tl.pos = 'd', order = 'hclust', addrect = 2,
insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
pch.cex = 0.9, pch.col = 'grey20')
```
Visualize confidence interval.
```{r confidence-interval}
# Visualize confidence interval
corrplot(M, lowCI = testRes$lowCI, uppCI = testRes$uppCI, order = 'hclust',
tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
# Visualize confidence interval and cross the significant coefficients
corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
addrect = 3, rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
```
## References
- Michael Friendly (2002). Corrgrams: Exploratory displays for correlation
matrices. The American Statistician, 56, 316--324.
- D.J. Murdoch, E.D. Chow (1996). A graphical display of large correlation
matrices. The American Statistician, 50, 178--180.
- Michael Hahsler, Christian Buchta and Kurt Hornik (2020). seriation: Infrastructure for Ordering
Objects Using Seriation. R package version 1.2-9. https://CRAN.R-project.org/package=seriation
- Hahsler M, Hornik K, Buchta C (2008). "Getting things in order: An introduction to the R package
seriation." _Journal of Statistical Software_, *25*(3), 1-34. ISSN 1548-7660, doi:
10.18637/jss.v025.i03 (URL: https://doi.org/10.18637/jss.v025.i03), <URL:
https://www.jstatsoft.org/v25/i03/>.
|