1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
data(mtcars)
M = cor(mtcars)
set.seed(0)
## different color series
## COL2: Get diverging colors
## c('RdBu', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdYlBu')
## COL1: Get sequential colors
## c('Oranges', 'Purples', 'Reds', 'Blues', 'Greens', 'Greys', 'OrRd', 'YlOrRd', 'YlOrBr', 'YlGn')
wb = c('white', 'black')
par(ask = TRUE)
## different color scale and methods to display corr-matrix
corrplot(M, method = 'number', col = 'black', cl.pos = 'n')
corrplot(M, method = 'number')
corrplot(M)
corrplot(M, order = 'AOE')
corrplot(M, order = 'AOE', addCoef.col = 'grey')
corrplot(M, order = 'AOE', cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2(n=10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PiYG'))
corrplot(M, order = 'AOE', col = COL2('PRGn'), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 20), cl.length = 21, addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('PuOr', 10), addCoef.col = 'grey')
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 100))
corrplot(M, order = 'AOE', col = COL2('RdYlBu', 10))
corrplot(M, method = 'color', col = COL2(n=20), cl.length = 21, order = 'AOE',
addCoef.col = 'grey')
corrplot(M, method = 'square', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'ellipse', col = COL2(n=200), order = 'AOE')
corrplot(M, method = 'shade', col = COL2(n=20), order = 'AOE')
corrplot(M, method = 'pie', order = 'AOE')
## col = wb
corrplot(M, col = wb, order = 'AOE', outline = TRUE, cl.pos = 'n')
## like Chinese wiqi, suit for either on screen or white-black print.
corrplot(M, col = wb, bg = 'gold2', order = 'AOE', cl.pos = 'n')
## mixed methods: It's more efficient if using function 'corrplot.mixed'
## circle + ellipse
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'ellipse', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + square
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'square', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + colorful number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'd')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## circle + black number
corrplot(M, order = 'AOE', type = 'upper', tl.pos = 'tp')
corrplot(M, add = TRUE, type = 'lower', method = 'number', order = 'AOE',
col = 'black', diag = FALSE, tl.pos = 'n', cl.pos = 'n')
## order is hclust and draw rectangles
corrplot(M, order = 'hclust')
corrplot(M, order = 'hclust', addrect = 2)
corrplot(M, order = 'hclust', addrect = 3, rect.col = 'red')
corrplot(M, order = 'hclust', addrect = 4, rect.col = 'blue')
corrplot(M, order = 'hclust', hclust.method = 'ward.D2', addrect = 4)
## visualize a matrix in [0, 1]
corrplot(abs(M), order = 'AOE', col.lim = c(0, 1))
corrplot(abs(M), order = 'AOE', is.corr = FALSE, col.lim = c(0, 1))
# when is.corr=TRUE, col.lim only affect the color legend
# If you change it, the color is still assigned on [-1, 1]
corrplot(M/2)
corrplot(M/2, col.lim = c(-0.5, 0.5))
# when is.corr=FALSE, col.lim is also used to assign colors
# if the matrix have both positive and negative values
# the matrix transformation keep every values positive and negative
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2))
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 2)
corrplot(M*2, is.corr = FALSE, col.lim = c(-2, 2) * 4)
## 0.5~0.6
corrplot(abs(M)/10+0.5, col = COL1('Greens', 10))
corrplot(abs(M)/10+0.5, is.corr = FALSE, col.lim = c(0.5, 0.6), col = COL1('YlGn', 10))
## visualize a matrix in [-100, 100]
ran = round(matrix(runif(225, -100, 100), 15))
corrplot(ran, is.corr = FALSE)
corrplot(ran, is.corr = FALSE, col.lim = c(-100, 100))
## visualize a matrix in [100, 300]
ran2 = ran + 200
# bad color, not suitable for a matrix in [100, 300]
corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL2(, 100))
# good color
corrplot(ran2, is.corr = FALSE, col.lim = c(100, 300), col = COL1(, 100))
## text-labels and plot type
corrplot(M, order = 'AOE', tl.srt = 45)
corrplot(M, order = 'AOE', tl.srt = 60)
corrplot(M, order = 'AOE', tl.pos = 'd', cl.pos = 'n')
corrplot(M, order = 'AOE', diag = FALSE, tl.pos = 'd')
corrplot(M, order = 'AOE', type = 'upper')
corrplot(M, order = 'AOE', type = 'upper', diag = FALSE)
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b')
corrplot(M, order = 'AOE', type = 'lower', cl.pos = 'b', diag = FALSE)
#### color-legend
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'l')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'c')
corrplot(M, order = 'AOE', cl.ratio = 0.2, cl.align = 'r')
corrplot(M, order = 'AOE', cl.pos = 'b')
corrplot(M, order = 'AOE', cl.pos = 'b', tl.pos = 'd')
corrplot(M, order = 'AOE', cl.pos = 'n')
## deal with missing Values
M2 = M
diag(M2) = NA
corrplot(M2)
corrplot(M2, na.label = 'o')
corrplot(M2, na.label = 'NA')
##the input matrix is not square
corrplot(M[1:8, ])
corrplot(M[, 1:8])
testRes = cor.mtest(mtcars, conf.level = 0.95)
## specialized the insignificant value according to the significant level
corrplot(M, p.mat = testRes$p, sig.level = 0.05, order = 'hclust', addrect = 2)
## leave blank on no significant coefficient
corrplot(M, p.mat = testRes$p, method = 'circle', type = 'lower', insig ='blank',
addCoef.col ='black', number.cex = 0.8, order = 'AOE', diag = FALSE)
## add p-values on no significant coefficients
corrplot(M, p.mat = testRes$p, insig = 'p-value')
## add all p-values
corrplot(M, p.mat = testRes$p, insig = 'p-value', sig.level = -1)
## add significant level stars
corrplot(M, p.mat = testRes$p, method = 'color', diag = FALSE, type = 'upper',
sig.level = c(0.001, 0.01, 0.05), pch.cex = 0.9,
insig = 'label_sig', pch.col = 'grey20', order = 'AOE')
## add significant level stars and cluster rectangles
corrplot(M, p.mat = testRes$p, tl.pos = 'd', order = 'hclust', addrect = 2,
insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
pch.cex = 0.9, pch.col = 'grey20')
# Visualize confidence interval
corrplot(M, lowCI = testRes$lowCI, uppCI = testRes$uppCI, order = 'hclust',
tl.pos = 'd', rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
# Visualize confidence interval and cross the significant coefficients
corrplot(M, p.mat = testRes$p, lowCI = testRes$lowCI, uppCI = testRes$uppCI,
addrect = 3, rect.col = 'navy', plotC = 'rect', cl.pos = 'n')
res1 = cor.mtest(mtcars, conf.level = 0.95)
res2 = cor.mtest(mtcars, conf.level = 0.99)
## plot confidence interval(0.95), 'circle' method
corrplot(M, low = res1$uppCI, upp = res1$uppCI,
plotCI = 'circle', addg = 'grey20', cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
plotCI = 'circle', addg = 'grey20', cl.pos = 'n')
corrplot(M, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'circle', cl.pos = 'n', pch.col = 'red')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'circle', cl.pos = 'n', pch.col = 'red')
## plot confidence interval(0.95), 'square' method
corrplot(M, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE',
plotCI = 'square', addg = NULL, cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
col = c('white', 'black'), bg = 'gold2', order = 'AOE', pch.col = 'red',
plotCI = 'square', addg = NULL, cl.pos = 'n')
## plot confidence interval0.95, 0.95, 0.99, 'rect' method
corrplot(M, low = res1$lowCI, upp = res1$uppCI, order = 'hclust',
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
corrplot(M, p.mat = res1$p, low = res1$lowCI, upp = res1$uppCI,
order = 'hclust', pch.col = 'red', sig.level = 0.05, addrect = 3,
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
corrplot(M, p.mat = res2$p, low = res2$lowCI, upp = res2$uppCI,
order = 'hclust', pch.col = 'red', sig.level = 0.01, addrect = 3,
rect.col = 'navy', plotCI = 'rect', cl.pos = 'n')
## an animation of changing confidence interval in different significance level
## begin.animaton
par(ask = FALSE)
for (i in seq(0.1, 0, -0.005)) {
tmp = cor.mtest(mtcars, conf.level = 1 - i)
corrplot(M, p.mat = tmp$p, low = tmp$lowCI, upp = tmp$uppCI, order = 'hclust',
pch.col = 'red', sig.level = i, plotCI = 'rect', cl.pos = 'n',
mar = c(0, 0, 1, 0),
title = substitute(alpha == x,
list(x = format(i, digits = 3, nsmall = 3))))
Sys.sleep(0.15)
}
## end.animaton
|