1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
#pragma once
#include <csetjmp> // for longjmp, setjmp, jmp_buf
#include <exception> // for exception
#include <stdexcept> // for std::runtime_error
#include <string> // for string, basic_string
#include <tuple> // for tuple, make_tuple
// NB: cpp11/R.hpp must precede R_ext/Error.h to ensure R_NO_REMAP is defined
#include "cpp11/R.hpp" // for SEXP, SEXPREC, CDR, R_NilValue, CAR, R_Pres...
#include "R_ext/Boolean.h" // for Rboolean
#include "R_ext/Error.h" // for Rf_error, Rf_warning
#include "R_ext/Print.h" // for REprintf
#include "R_ext/Utils.h" // for R_CheckUserInterrupt
// We would like to remove this, since all supported versions of R now support proper
// unwind protect, but some groups rely on it existing, like arrow and systemfonts
// https://github.com/r-lib/cpp11/issues/412
#define HAS_UNWIND_PROTECT
#ifdef CPP11_USE_FMT
#define FMT_HEADER_ONLY
#include "fmt/core.h"
#endif
namespace cpp11 {
class unwind_exception : public std::exception {
public:
SEXP token;
unwind_exception(SEXP token_) : token(token_) {}
};
/// Unwind Protection from C longjmp's, like those used in R error handling
///
/// @param code The code to which needs to be protected, as a nullary callable
template <typename Fun, typename = typename std::enable_if<std::is_same<
decltype(std::declval<Fun&&>()()), SEXP>::value>::type>
SEXP unwind_protect(Fun&& code) {
static SEXP token = [] {
SEXP res = R_MakeUnwindCont();
R_PreserveObject(res);
return res;
}();
std::jmp_buf jmpbuf;
if (setjmp(jmpbuf)) {
throw unwind_exception(token);
}
SEXP res = R_UnwindProtect(
[](void* data) -> SEXP {
auto callback = static_cast<decltype(&code)>(data);
return static_cast<Fun&&>(*callback)();
},
&code,
[](void* jmpbuf, Rboolean jump) {
if (jump == TRUE) {
// We need to first jump back into the C++ stacks because you can't safely
// throw exceptions from C stack frames.
longjmp(*static_cast<std::jmp_buf*>(jmpbuf), 1);
}
},
&jmpbuf, token);
// R_UnwindProtect adds the result to the CAR of the continuation token,
// which implicitly protects the result. However if there is no error and
// R_UwindProtect does a normal exit the memory shouldn't be protected, so we
// unset it here before returning the value ourselves.
SETCAR(token, R_NilValue);
return res;
}
template <typename Fun, typename = typename std::enable_if<std::is_same<
decltype(std::declval<Fun&&>()()), void>::value>::type>
void unwind_protect(Fun&& code) {
(void)unwind_protect([&] {
std::forward<Fun>(code)();
return R_NilValue;
});
}
template <typename Fun, typename R = decltype(std::declval<Fun&&>()())>
typename std::enable_if<!std::is_same<R, SEXP>::value && !std::is_same<R, void>::value,
R>::type
unwind_protect(Fun&& code) {
R out;
(void)unwind_protect([&] {
out = std::forward<Fun>(code)();
return R_NilValue;
});
return out;
}
namespace detail {
template <size_t...>
struct index_sequence {
using type = index_sequence;
};
template <typename, size_t>
struct appended_sequence;
template <std::size_t... I, std::size_t J>
struct appended_sequence<index_sequence<I...>, J> : index_sequence<I..., J> {};
template <size_t N>
struct make_index_sequence
: appended_sequence<typename make_index_sequence<N - 1>::type, N - 1> {};
template <>
struct make_index_sequence<0> : index_sequence<> {};
template <typename F, typename... Aref, size_t... I>
decltype(std::declval<F&&>()(std::declval<Aref>()...)) apply(
F&& f, std::tuple<Aref...>&& a, const index_sequence<I...>&) {
return std::forward<F>(f)(std::get<I>(std::move(a))...);
}
template <typename F, typename... Aref>
decltype(std::declval<F&&>()(std::declval<Aref>()...)) apply(F&& f,
std::tuple<Aref...>&& a) {
return apply(std::forward<F>(f), std::move(a), make_index_sequence<sizeof...(Aref)>{});
}
// overload to silence a compiler warning that the (empty) tuple parameter is set but
// unused
template <typename F>
decltype(std::declval<F&&>()()) apply(F&& f, std::tuple<>&&) {
return std::forward<F>(f)();
}
template <typename F, typename... Aref>
struct closure {
decltype(std::declval<F*>()(std::declval<Aref>()...)) operator()() && {
return apply(ptr_, std::move(arefs_));
}
F* ptr_;
std::tuple<Aref...> arefs_;
};
} // namespace detail
struct protect {
template <typename F>
struct function {
template <typename... A>
decltype(std::declval<F*>()(std::declval<A&&>()...)) operator()(A&&... a) const {
// workaround to support gcc4.8, which can't capture a parameter pack
return unwind_protect(
detail::closure<F, A&&...>{ptr_, std::forward_as_tuple(std::forward<A>(a)...)});
}
F* ptr_;
};
/// May not be applied to a function bearing attributes, which interfere with linkage on
/// some compilers; use an appropriately attributed alternative. (For example, Rf_error
/// bears the [[noreturn]] attribute and must be protected with safe.noreturn rather
/// than safe.operator[]).
template <typename F>
constexpr function<F> operator[](F* raw) const {
return {raw};
}
template <typename F>
struct noreturn_function {
template <typename... A>
void operator() [[noreturn]] (A&&... a) const {
// workaround to support gcc4.8, which can't capture a parameter pack
unwind_protect(
detail::closure<F, A&&...>{ptr_, std::forward_as_tuple(std::forward<A>(a)...)});
// Compiler hint to allow [[noreturn]] attribute; this is never executed since
// the above call will not return.
throw std::runtime_error("[[noreturn]]");
}
F* ptr_;
};
template <typename F>
constexpr noreturn_function<F> noreturn(F* raw) const {
return {raw};
}
};
constexpr struct protect safe = {};
inline void check_user_interrupt() { safe[R_CheckUserInterrupt](); }
#ifdef CPP11_USE_FMT
template <typename... Args>
void stop [[noreturn]] (const char* fmt_arg, Args&&... args) {
std::string msg = fmt::format(fmt_arg, std::forward<Args>(args)...);
safe.noreturn(Rf_errorcall)(R_NilValue, "%s", msg.c_str());
}
template <typename... Args>
void stop [[noreturn]] (const std::string& fmt_arg, Args&&... args) {
std::string msg = fmt::format(fmt_arg, std::forward<Args>(args)...);
safe.noreturn(Rf_errorcall)(R_NilValue, "%s", msg.c_str());
}
template <typename... Args>
void warning(const char* fmt_arg, Args&&... args) {
std::string msg = fmt::format(fmt_arg, std::forward<Args>(args)...);
safe[Rf_warningcall](R_NilValue, "%s", msg.c_str());
}
template <typename... Args>
void warning(const std::string& fmt_arg, Args&&... args) {
std::string msg = fmt::format(fmt_arg, std::forward<Args>(args)...);
safe[Rf_warningcall](R_NilValue, "%s", msg.c_str());
}
#else
template <typename... Args>
void stop [[noreturn]] (const char* fmt, Args... args) {
safe.noreturn(Rf_errorcall)(R_NilValue, fmt, args...);
}
template <typename... Args>
void stop [[noreturn]] (const std::string& fmt, Args... args) {
safe.noreturn(Rf_errorcall)(R_NilValue, fmt.c_str(), args...);
}
template <typename... Args>
void warning(const char* fmt, Args... args) {
safe[Rf_warningcall](R_NilValue, fmt, args...);
}
template <typename... Args>
void warning(const std::string& fmt, Args... args) {
safe[Rf_warningcall](R_NilValue, fmt.c_str(), args...);
}
#endif
namespace detail {
// A doubly-linked list of preserved objects, allowing O(1) insertion/release of objects
// compared to O(N preserved) with `R_PreserveObject()` and `R_ReleaseObject()`.
//
// We let R manage the memory of the list itself by calling `R_PreserveObject()` on it.
//
// cpp11 being a header only library makes creating a "global" preserve list a bit tricky.
// The trick we use here is that static local variables in inline extern functions are
// guaranteed by the standard to be unique across the whole program. Inline functions are
// extern by default, but `static inline` functions are not, so do not change these
// functions to `static`. If we did that, we would end up having one preserve list per
// compilation unit instead. As it stands today, we are fairly confident that we have 1
// preserve list per package, which seems to work nicely.
// https://stackoverflow.com/questions/185624/what-happens-to-static-variables-in-inline-functions
// https://stackoverflow.com/questions/51612866/global-variables-in-header-only-library
// https://github.com/r-lib/cpp11/issues/330
//
// > A static local variable in an extern inline function always refers to the
// same object. 7.1.2/4 - C++98/C++14 (n3797)
namespace store {
inline SEXP init() {
SEXP out = Rf_cons(R_NilValue, Rf_cons(R_NilValue, R_NilValue));
R_PreserveObject(out);
return out;
}
inline SEXP get() {
// Note the `static` local variable in the inline extern function here! Guarantees we
// have 1 unique preserve list across all compilation units in the package.
static SEXP out = init();
return out;
}
inline R_xlen_t count() {
const R_xlen_t head = 1;
const R_xlen_t tail = 1;
SEXP list = get();
return Rf_xlength(list) - head - tail;
}
inline SEXP insert(SEXP x) {
if (x == R_NilValue) {
return R_NilValue;
}
PROTECT(x);
SEXP list = get();
// Get references to the head of the preserve list and the next element
// after the head
SEXP head = list;
SEXP next = CDR(list);
// Add a new cell that points to the current head + next.
SEXP cell = PROTECT(Rf_cons(head, next));
SET_TAG(cell, x);
// Update the head + next to point at the newly-created cell,
// effectively inserting that cell between the current head + next.
SETCDR(head, cell);
SETCAR(next, cell);
UNPROTECT(2);
return cell;
}
inline void release(SEXP cell) {
if (cell == R_NilValue) {
return;
}
// Get a reference to the cells before and after the token.
SEXP lhs = CAR(cell);
SEXP rhs = CDR(cell);
// Remove the cell from the preserve list -- effectively, we do this
// by updating the 'lhs' and 'rhs' references to point at each-other,
// effectively removing any references to the cell in the pairlist.
SETCDR(lhs, rhs);
SETCAR(rhs, lhs);
}
inline void print() {
SEXP list = get();
for (SEXP cell = list; cell != R_NilValue; cell = CDR(cell)) {
REprintf("%p CAR: %p CDR: %p TAG: %p\n", reinterpret_cast<void*>(cell),
reinterpret_cast<void*>(CAR(cell)), reinterpret_cast<void*>(CDR(cell)),
reinterpret_cast<void*>(TAG(cell)));
}
REprintf("---\n");
}
} // namespace store
} // namespace detail
} // namespace cpp11
|