1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
|
#pragma once
#include <stddef.h> // for ptrdiff_t, size_t
#include <algorithm> // for max
#include <array> // for array
#include <cstdio> // for snprintf
#include <cstring> // for memcpy
#include <exception> // for exception
#include <initializer_list> // for initializer_list
#include <iterator> // for forward_iterator_tag, random_ac...
#include <stdexcept> // for out_of_range
#include <string> // for string, basic_string
#include <type_traits> // for decay, is_same, enable_if, is_c...
#include <utility> // for declval
#include "cpp11/R.hpp" // for R_xlen_t, SEXP, SEXPREC, Rf_xle...
#include "cpp11/attribute_proxy.hpp" // for attribute_proxy
#include "cpp11/named_arg.hpp" // for named_arg
#include "cpp11/protect.hpp" // for store
#include "cpp11/r_string.hpp" // for r_string
#include "cpp11/sexp.hpp" // for sexp
namespace cpp11 {
using namespace cpp11::literals;
namespace writable {
template <typename T>
class r_vector;
} // namespace writable
// Declarations
template <typename T>
class r_vector {
public:
// Forward declare
class const_iterator;
using underlying_type = typename traits::get_underlying_type<T>::type;
private:
SEXP data_ = R_NilValue;
SEXP protect_ = R_NilValue;
bool is_altrep_ = false;
underlying_type* data_p_ = nullptr;
R_xlen_t length_ = 0;
public:
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
~r_vector();
r_vector() noexcept = default;
r_vector(SEXP data);
r_vector(SEXP data, bool is_altrep);
r_vector(const r_vector& x);
r_vector(r_vector<T>&& x);
r_vector(const writable::r_vector<T>& x);
r_vector(named_arg) = delete;
r_vector& operator=(const r_vector& rhs);
r_vector& operator=(r_vector&& rhs);
operator SEXP() const;
operator sexp() const;
#ifdef LONG_VECTOR_SUPPORT
T operator[](const int pos) const;
#endif
T operator[](const R_xlen_t pos) const;
T operator[](const size_type pos) const;
T operator[](const r_string& name) const;
#ifdef LONG_VECTOR_SUPPORT
T at(const int pos) const;
#endif
T at(const R_xlen_t pos) const;
T at(const size_type pos) const;
T at(const r_string& name) const;
bool contains(const r_string& name) const;
bool is_altrep() const;
bool named() const;
R_xlen_t size() const;
bool empty() const;
SEXP data() const;
const sexp attr(const char* name) const;
const sexp attr(const std::string& name) const;
const sexp attr(SEXP name) const;
r_vector<r_string> names() const;
const_iterator begin() const;
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_iterator find(const r_string& name) const;
class const_iterator {
// Iterator references:
// https://cplusplus.com/reference/iterator/
// https://stackoverflow.com/questions/8054273/how-to-implement-an-stl-style-iterator-and-avoid-common-pitfalls
// It seems like our iterator doesn't fully implement everything for
// `random_access_iterator_tag` (like an `[]` operator, for example). If we discover
// issues with it, we probably need to add more methods.
private:
const r_vector* data_;
R_xlen_t pos_;
std::array<underlying_type, 64 * 64> buf_;
R_xlen_t block_start_ = 0;
R_xlen_t length_ = 0;
public:
using difference_type = ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;
using iterator_category = std::random_access_iterator_tag;
const_iterator(const r_vector* data, R_xlen_t pos);
const_iterator operator+(R_xlen_t pos);
ptrdiff_t operator-(const const_iterator& other) const;
const_iterator& operator++();
const_iterator& operator--();
const_iterator& operator+=(R_xlen_t pos);
const_iterator& operator-=(R_xlen_t pos);
bool operator!=(const const_iterator& other) const;
bool operator==(const const_iterator& other) const;
T operator*() const;
friend class writable::r_vector<T>::iterator;
private:
/// Implemented in specialization
static bool use_buf(bool is_altrep);
void fill_buf(R_xlen_t pos);
};
private:
/// Implemented in specialization
static underlying_type get_elt(SEXP x, R_xlen_t i);
/// Implemented in specialization
static underlying_type* get_p(bool is_altrep, SEXP data);
/// Implemented in specialization
static underlying_type const* get_const_p(bool is_altrep, SEXP data);
/// Implemented in specialization
static void get_region(SEXP x, R_xlen_t i, R_xlen_t n, underlying_type* buf);
/// Implemented in specialization
static SEXPTYPE get_sexptype();
/// Implemented in specialization (throws by default, specialization in list type)
static T get_oob();
static SEXP valid_type(SEXP x);
static SEXP valid_length(SEXP x, R_xlen_t n);
friend class writable::r_vector<T>;
};
namespace writable {
template <typename T>
using has_begin_fun = std::decay<decltype(*begin(std::declval<T>()))>;
/// Read/write access to new or copied r_vectors
template <typename T>
class r_vector : public cpp11::r_vector<T> {
public:
// Forward declare
class proxy;
class iterator;
private:
R_xlen_t capacity_ = 0;
using cpp11::r_vector<T>::data_;
using cpp11::r_vector<T>::data_p_;
using cpp11::r_vector<T>::is_altrep_;
using cpp11::r_vector<T>::length_;
using cpp11::r_vector<T>::protect_;
using typename cpp11::r_vector<T>::underlying_type;
public:
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef proxy value_type;
typedef proxy* pointer;
typedef proxy& reference;
r_vector() noexcept = default;
r_vector(const SEXP& data);
r_vector(SEXP&& data);
r_vector(const SEXP& data, bool is_altrep);
r_vector(SEXP&& data, bool is_altrep);
r_vector(const r_vector& rhs);
r_vector(r_vector&& rhs);
r_vector(const cpp11::r_vector<T>& rhs);
r_vector(std::initializer_list<T> il);
r_vector(std::initializer_list<named_arg> il);
explicit r_vector(const R_xlen_t size);
template <typename Iter>
r_vector(Iter first, Iter last);
template <typename V, typename W = has_begin_fun<V>>
r_vector(const V& obj);
r_vector& operator=(const r_vector& rhs);
r_vector& operator=(r_vector&& rhs);
operator SEXP() const;
#ifdef LONG_VECTOR_SUPPORT
proxy operator[](const int pos) const;
#endif
proxy operator[](const R_xlen_t pos) const;
proxy operator[](const size_type pos) const;
proxy operator[](const r_string& name) const;
#ifdef LONG_VECTOR_SUPPORT
proxy at(const int pos) const;
#endif
proxy at(const R_xlen_t pos) const;
proxy at(const size_type pos) const;
proxy at(const r_string& name) const;
void push_back(T value);
/// Implemented in `strings.hpp`
void push_back(const named_arg& value);
void pop_back();
void resize(R_xlen_t count);
void reserve(R_xlen_t new_capacity);
iterator insert(R_xlen_t pos, T value);
iterator erase(R_xlen_t pos);
void clear();
iterator begin() const;
iterator end() const;
using cpp11::r_vector<T>::cbegin;
using cpp11::r_vector<T>::cend;
using cpp11::r_vector<T>::size;
iterator find(const r_string& name) const;
attribute_proxy<r_vector<T>> attr(const char* name) const;
attribute_proxy<r_vector<T>> attr(const std::string& name) const;
attribute_proxy<r_vector<T>> attr(SEXP name) const;
attribute_proxy<r_vector<T>> names() const;
class proxy {
private:
const SEXP data_;
const R_xlen_t index_;
underlying_type* const p_;
bool is_altrep_;
public:
proxy(SEXP data, const R_xlen_t index, underlying_type* const p, bool is_altrep);
proxy& operator=(const proxy& rhs);
proxy& operator=(const T& rhs);
proxy& operator+=(const T& rhs);
proxy& operator-=(const T& rhs);
proxy& operator*=(const T& rhs);
proxy& operator/=(const T& rhs);
proxy& operator++(int);
proxy& operator--(int);
void operator++();
void operator--();
operator T() const;
private:
underlying_type get() const;
void set(underlying_type x);
};
class iterator : public cpp11::r_vector<T>::const_iterator {
private:
using cpp11::r_vector<T>::const_iterator::data_;
using cpp11::r_vector<T>::const_iterator::block_start_;
using cpp11::r_vector<T>::const_iterator::pos_;
using cpp11::r_vector<T>::const_iterator::buf_;
using cpp11::r_vector<T>::const_iterator::length_;
using cpp11::r_vector<T>::const_iterator::use_buf;
using cpp11::r_vector<T>::const_iterator::fill_buf;
public:
using difference_type = ptrdiff_t;
using value_type = proxy;
using pointer = proxy*;
using reference = proxy&;
using iterator_category = std::forward_iterator_tag;
iterator(const r_vector* data, R_xlen_t pos);
iterator& operator++();
proxy operator*() const;
using cpp11::r_vector<T>::const_iterator::operator!=;
iterator& operator+=(R_xlen_t rhs);
iterator operator+(R_xlen_t rhs);
};
private:
/// Implemented in specialization
static void set_elt(SEXP x, R_xlen_t i, underlying_type value);
static SEXP reserve_data(SEXP x, bool is_altrep, R_xlen_t size);
static SEXP resize_data(SEXP x, bool is_altrep, R_xlen_t size);
static SEXP resize_names(SEXP x, R_xlen_t size);
using cpp11::r_vector<T>::get_elt;
using cpp11::r_vector<T>::get_p;
using cpp11::r_vector<T>::get_const_p;
using cpp11::r_vector<T>::get_sexptype;
using cpp11::r_vector<T>::valid_type;
using cpp11::r_vector<T>::valid_length;
};
} // namespace writable
// Implementations below
template <typename T>
inline r_vector<T>::~r_vector() {
detail::store::release(protect_);
}
template <typename T>
inline r_vector<T>::r_vector(const SEXP data)
: data_(valid_type(data)),
protect_(detail::store::insert(data)),
is_altrep_(ALTREP(data)),
data_p_(get_p(ALTREP(data), data)),
length_(Rf_xlength(data)) {}
template <typename T>
inline r_vector<T>::r_vector(const SEXP data, bool is_altrep)
: data_(valid_type(data)),
protect_(detail::store::insert(data)),
is_altrep_(is_altrep),
data_p_(get_p(is_altrep, data)),
length_(Rf_xlength(data)) {}
// We are in read-only space so we can just copy over all properties except for
// `protect_`, which we need to manage on our own. `x` persists after this call, so we
// don't clear anything.
template <typename T>
inline r_vector<T>::r_vector(const r_vector& x) {
data_ = x.data_;
protect_ = detail::store::insert(data_);
is_altrep_ = x.is_altrep_;
data_p_ = x.data_p_;
length_ = x.length_;
}
// `x` here is a temporary value, it is going to be destructed right after this.
// Take ownership over all `x` details, including `protect_`.
// Importantly, set `x.protect_` to `R_NilValue` to prevent the `x` destructor from
// releasing the object that we now own.
template <typename T>
inline r_vector<T>::r_vector(r_vector&& x) {
data_ = x.data_;
protect_ = x.protect_;
is_altrep_ = x.is_altrep_;
data_p_ = x.data_p_;
length_ = x.length_;
// Important for `x.protect_`, extra check for everything else
x.data_ = R_NilValue;
x.protect_ = R_NilValue;
x.is_altrep_ = false;
x.data_p_ = nullptr;
x.length_ = 0;
}
// `x` here is writable, meaning the underlying `SEXP` could have more `capacity` than
// a read only equivalent would expect. This means we have to go through `SEXP` first,
// to truncate the writable data, and then we can wrap it in a read only `r_vector`.
//
// It would be the same scenario if we came from a writable temporary, i.e.
// `writable::r_vector<T>&& x`, so we let this method handle both scenarios.
template <typename T>
inline r_vector<T>::r_vector(const writable::r_vector<T>& x)
: r_vector(static_cast<SEXP>(x)) {}
// Same reasoning as `r_vector(const r_vector& x)` constructor
template <typename T>
inline r_vector<T>& r_vector<T>::operator=(const r_vector& rhs) {
if (data_ == rhs.data_) {
return *this;
}
// Release existing object that we protect
detail::store::release(protect_);
data_ = rhs.data_;
protect_ = detail::store::insert(data_);
is_altrep_ = rhs.is_altrep_;
data_p_ = rhs.data_p_;
length_ = rhs.length_;
return *this;
}
// Same reasoning as `r_vector(r_vector&& x)` constructor
template <typename T>
inline r_vector<T>& r_vector<T>::operator=(r_vector&& rhs) {
if (data_ == rhs.data_) {
return *this;
}
// Release existing object that we protect
detail::store::release(protect_);
data_ = rhs.data_;
protect_ = rhs.protect_;
is_altrep_ = rhs.is_altrep_;
data_p_ = rhs.data_p_;
length_ = rhs.length_;
// Important for `rhs.protect_`, extra check for everything else
rhs.data_ = R_NilValue;
rhs.protect_ = R_NilValue;
rhs.is_altrep_ = false;
rhs.data_p_ = nullptr;
rhs.length_ = 0;
return *this;
}
template <typename T>
inline r_vector<T>::operator SEXP() const {
return data_;
}
template <typename T>
inline r_vector<T>::operator sexp() const {
return data_;
}
#ifdef LONG_VECTOR_SUPPORT
template <typename T>
inline T r_vector<T>::operator[](const int pos) const {
return operator[](static_cast<R_xlen_t>(pos));
}
#endif
template <typename T>
inline T r_vector<T>::operator[](const R_xlen_t pos) const {
// Handles ALTREP, VECSXP, and STRSXP cases through `get_elt()`
const underlying_type elt = (data_p_ != nullptr) ? data_p_[pos] : get_elt(data_, pos);
return static_cast<T>(elt);
}
template <typename T>
inline T r_vector<T>::operator[](const size_type pos) const {
return operator[](static_cast<R_xlen_t>(pos));
}
template <typename T>
inline T r_vector<T>::operator[](const r_string& name) const {
SEXP names = this->names();
R_xlen_t size = Rf_xlength(names);
for (R_xlen_t pos = 0; pos < size; ++pos) {
auto cur = Rf_translateCharUTF8(STRING_ELT(names, pos));
if (name == cur) {
return operator[](pos);
}
}
return get_oob();
}
#ifdef LONG_VECTOR_SUPPORT
template <typename T>
inline T r_vector<T>::at(const int pos) const {
return at(static_cast<R_xlen_t>(pos));
}
#endif
template <typename T>
inline T r_vector<T>::at(const R_xlen_t pos) const {
if (pos < 0 || pos >= length_) {
throw std::out_of_range("r_vector");
}
return operator[](pos);
}
template <typename T>
inline T r_vector<T>::at(const size_type pos) const {
return at(static_cast<R_xlen_t>(pos));
}
template <typename T>
inline T r_vector<T>::at(const r_string& name) const {
return operator[](name);
}
template <typename T>
inline bool r_vector<T>::contains(const r_string& name) const {
SEXP names = this->names();
R_xlen_t size = Rf_xlength(names);
for (R_xlen_t pos = 0; pos < size; ++pos) {
auto cur = Rf_translateCharUTF8(STRING_ELT(names, pos));
if (name == cur) {
return true;
}
}
return false;
}
template <typename T>
inline bool r_vector<T>::is_altrep() const {
return is_altrep_;
}
template <typename T>
inline bool r_vector<T>::named() const {
return Rf_getAttrib(data_, R_NamesSymbol) != R_NilValue;
}
template <typename T>
inline R_xlen_t r_vector<T>::size() const {
return length_;
}
template <typename T>
inline bool r_vector<T>::empty() const {
return (!(this->size() > 0));
}
/// Provide access to the underlying data, mainly for interface
/// compatibility with std::vector
template <typename T>
inline SEXP r_vector<T>::data() const {
return data_;
}
template <typename T>
inline const sexp r_vector<T>::attr(const char* name) const {
return SEXP(attribute_proxy<r_vector<T>>(*this, name));
}
template <typename T>
inline const sexp r_vector<T>::attr(const std::string& name) const {
return SEXP(attribute_proxy<r_vector<T>>(*this, name.c_str()));
}
template <typename T>
inline const sexp r_vector<T>::attr(SEXP name) const {
return SEXP(attribute_proxy<r_vector<T>>(*this, name));
}
template <typename T>
inline r_vector<r_string> r_vector<T>::names() const {
SEXP nms = Rf_getAttrib(data_, R_NamesSymbol);
if (nms == R_NilValue) {
return r_vector<r_string>();
} else {
return r_vector<r_string>(nms);
}
}
template <typename T>
inline T r_vector<T>::get_oob() {
throw std::out_of_range("r_vector");
}
class type_error : public std::exception {
public:
type_error(SEXPTYPE expected, SEXPTYPE actual) : expected_(expected), actual_(actual) {}
virtual const char* what() const noexcept override {
snprintf(str_, 64, "Invalid input type, expected '%s' actual '%s'",
Rf_type2char(expected_), Rf_type2char(actual_));
return str_;
}
private:
SEXPTYPE expected_;
SEXPTYPE actual_;
mutable char str_[64];
};
template <typename T>
inline SEXP r_vector<T>::valid_type(SEXP x) {
const SEXPTYPE type = get_sexptype();
if (x == nullptr) {
throw type_error(type, NILSXP);
}
if (detail::r_typeof(x) != type) {
throw type_error(type, detail::r_typeof(x));
}
return x;
}
template <typename T>
inline SEXP r_vector<T>::valid_length(SEXP x, R_xlen_t n) {
R_xlen_t x_n = Rf_xlength(x);
if (x_n == n) {
return x;
}
char message[128];
snprintf(message, 128,
"Invalid input length, expected '%" CPP11_PRIdXLEN_T
"' actual '%" CPP11_PRIdXLEN_T "'.",
n, x_n);
throw std::length_error(message);
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::begin() const {
return const_iterator(this, 0);
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::end() const {
return const_iterator(this, length_);
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::cbegin() const {
return const_iterator(this, 0);
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::cend() const {
return const_iterator(this, length_);
}
template <typename T>
r_vector<T>::const_iterator::const_iterator(const r_vector* data, R_xlen_t pos)
: data_(data), pos_(pos), buf_() {
if (use_buf(data_->is_altrep())) {
fill_buf(pos);
}
}
template <typename T>
inline typename r_vector<T>::const_iterator& r_vector<T>::const_iterator::operator++() {
++pos_;
if (use_buf(data_->is_altrep()) && pos_ >= block_start_ + length_) {
fill_buf(pos_);
}
return *this;
}
template <typename T>
inline typename r_vector<T>::const_iterator& r_vector<T>::const_iterator::operator--() {
--pos_;
if (use_buf(data_->is_altrep()) && pos_ > 0 && pos_ < block_start_) {
fill_buf(std::max(0_xl, pos_ - 64));
}
return *this;
}
template <typename T>
inline typename r_vector<T>::const_iterator& r_vector<T>::const_iterator::operator+=(
R_xlen_t i) {
pos_ += i;
if (use_buf(data_->is_altrep()) && pos_ >= block_start_ + length_) {
fill_buf(pos_);
}
return *this;
}
template <typename T>
inline typename r_vector<T>::const_iterator& r_vector<T>::const_iterator::operator-=(
R_xlen_t i) {
pos_ -= i;
if (use_buf(data_->is_altrep()) && pos_ >= block_start_ + length_) {
fill_buf(std::max(0_xl, pos_ - 64));
}
return *this;
}
template <typename T>
inline bool r_vector<T>::const_iterator::operator!=(
const r_vector::const_iterator& other) const {
return pos_ != other.pos_;
}
template <typename T>
inline bool r_vector<T>::const_iterator::operator==(
const r_vector::const_iterator& other) const {
return pos_ == other.pos_;
}
template <typename T>
inline ptrdiff_t r_vector<T>::const_iterator::operator-(
const r_vector::const_iterator& other) const {
return pos_ - other.pos_;
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::const_iterator::operator+(
R_xlen_t rhs) {
auto it = *this;
it += rhs;
return it;
}
template <typename T>
inline typename r_vector<T>::const_iterator r_vector<T>::find(
const r_string& name) const {
SEXP names = this->names();
R_xlen_t size = Rf_xlength(names);
for (R_xlen_t pos = 0; pos < size; ++pos) {
auto cur = Rf_translateCharUTF8(STRING_ELT(names, pos));
if (name == cur) {
return begin() + pos;
}
}
return end();
}
template <typename T>
inline T r_vector<T>::const_iterator::operator*() const {
if (use_buf(data_->is_altrep())) {
// Use pre-loaded buffer for compatible ALTREP types
return static_cast<T>(buf_[pos_ - block_start_]);
} else {
// Otherwise pass through to normal retrieval method
return data_->operator[](pos_);
}
}
template <typename T>
inline void r_vector<T>::const_iterator::fill_buf(R_xlen_t pos) {
using namespace cpp11::literals;
length_ = std::min(64_xl, data_->size() - pos);
get_region(data_->data_, pos, length_, buf_.data());
block_start_ = pos;
}
namespace writable {
template <typename T>
inline r_vector<T>::r_vector(const SEXP& data)
: cpp11::r_vector<T>(safe[Rf_shallow_duplicate](data)), capacity_(length_) {}
template <typename T>
inline r_vector<T>::r_vector(SEXP&& data)
: cpp11::r_vector<T>(data), capacity_(length_) {}
template <typename T>
inline r_vector<T>::r_vector(const SEXP& data, bool is_altrep)
: cpp11::r_vector<T>(safe[Rf_shallow_duplicate](data), is_altrep),
capacity_(length_) {}
template <typename T>
inline r_vector<T>::r_vector(SEXP&& data, bool is_altrep)
: cpp11::r_vector<T>(data, is_altrep), capacity_(length_) {}
template <typename T>
inline r_vector<T>::r_vector(const r_vector& rhs) {
// We don't want to just pass through to the read-only constructor because we'd
// have to convert to `SEXP` first, which could truncate, and then we'd still have
// to shallow duplicate after that to really ensure we have a duplicate, which can
// result in too many copies (#369).
//
// Instead we take control of setting all fields to try and only duplicate 1 time.
// If there is extra capacity in the `rhs`, that is also copied over. Resist the urge
// to try and trim the extra capacity during the duplication. We really do want to do a
// shallow duplicate to ensure that ALL attributes are copied over, including `dim` and
// `dimnames`, which would be lost if we instead used `reserve_data()` to do a combined
// duplicate + possible truncate. This is important for the `matrix` class.
data_ = safe[Rf_shallow_duplicate](rhs.data_);
protect_ = detail::store::insert(data_);
is_altrep_ = ALTREP(data_);
data_p_ = (data_ == R_NilValue) ? nullptr : get_p(is_altrep_, data_);
length_ = rhs.length_;
capacity_ = rhs.capacity_;
}
template <typename T>
inline r_vector<T>::r_vector(r_vector&& rhs) {
// We don't want to pass through to the read-only constructor from a
// `writable::r_vector<T>&& rhs` as that forces a truncation to be able to generate
// a well-formed read-only vector. Instead, we take advantage of the fact that we
// are going from writable input to writable output and just move everything over.
//
// This ends up looking very similar to the equivalent read-only constructor from a
// read-only `r_vector&& rhs`, with the addition of moving the capacity.
data_ = rhs.data_;
protect_ = rhs.protect_;
is_altrep_ = rhs.is_altrep_;
data_p_ = rhs.data_p_;
length_ = rhs.length_;
capacity_ = rhs.capacity_;
// Important for `rhs.protect_`, extra check for everything else
rhs.data_ = R_NilValue;
rhs.protect_ = R_NilValue;
rhs.is_altrep_ = false;
rhs.data_p_ = nullptr;
rhs.length_ = 0;
rhs.capacity_ = 0;
}
template <typename T>
inline r_vector<T>::r_vector(const cpp11::r_vector<T>& rhs)
: cpp11::r_vector<T>(safe[Rf_shallow_duplicate](rhs.data_)), capacity_(rhs.length_) {}
template <typename T>
inline r_vector<T>::r_vector(std::initializer_list<T> il)
: cpp11::r_vector<T>(safe[Rf_allocVector](get_sexptype(), il.size())),
capacity_(il.size()) {
auto it = il.begin();
if (data_p_ != nullptr) {
for (R_xlen_t i = 0; i < capacity_; ++i, ++it) {
data_p_[i] = static_cast<underlying_type>(*it);
}
} else {
// Handles both the ALTREP and VECSXP cases
for (R_xlen_t i = 0; i < capacity_; ++i, ++it) {
set_elt(data_, i, static_cast<underlying_type>(*it));
}
}
}
template <typename T>
inline r_vector<T>::r_vector(std::initializer_list<named_arg> il)
: cpp11::r_vector<T>(safe[Rf_allocVector](get_sexptype(), il.size())),
capacity_(il.size()) {
auto it = il.begin();
// SAFETY: Loop through once outside the `unwind_protect()` to perform the
// validation that might `throw`.
for (R_xlen_t i = 0; i < capacity_; ++i, ++it) {
SEXP value = it->value();
valid_type(value);
valid_length(value, 1);
}
unwind_protect([&] {
SEXP names = Rf_allocVector(STRSXP, capacity_);
Rf_setAttrib(data_, R_NamesSymbol, names);
auto it = il.begin();
for (R_xlen_t i = 0; i < capacity_; ++i, ++it) {
SEXP value = it->value();
// SAFETY: We've validated type and length ahead of this.
const underlying_type elt = get_elt(value, 0);
// TODO: The equivalent ctor from `initializer_list<r_string>` has a specialization
// for `<r_string>` to translate `elt` to UTF-8 before assigning. Should we have
// that here too? `named_arg` doesn't do any checking here.
if (data_p_ != nullptr) {
data_p_[i] = elt;
} else {
// Handles STRSXP case. VECSXP case has its own specialization.
// We don't expect any ALTREP cases since we just freshly allocated `data_`.
set_elt(data_, i, elt);
}
SEXP name = Rf_mkCharCE(it->name(), CE_UTF8);
SET_STRING_ELT(names, i, name);
}
});
}
template <typename T>
inline r_vector<T>::r_vector(const R_xlen_t size) : r_vector() {
resize(size);
}
template <typename T>
template <typename Iter>
inline r_vector<T>::r_vector(Iter first, Iter last) : r_vector() {
reserve(last - first);
while (first != last) {
push_back(*first);
++first;
}
}
template <typename T>
template <typename V, typename W>
inline r_vector<T>::r_vector(const V& obj) : r_vector() {
auto first = obj.begin();
auto last = obj.end();
reserve(last - first);
while (first != last) {
push_back(*first);
++first;
}
}
template <typename T>
inline r_vector<T>& r_vector<T>::operator=(const r_vector& rhs) {
if (data_ == rhs.data_) {
return *this;
}
// We don't release the old object until the end in case we throw an exception
// during the duplicate.
SEXP old_protect = protect_;
// Unlike with move assignment operator, we can't just call the read only parent method.
// We are in writable mode, so we must duplicate the `rhs` (since it isn't a temporary
// we can just take ownership of) and recompute the properties from the duplicate.
data_ = safe[Rf_shallow_duplicate](rhs.data_);
protect_ = detail::store::insert(data_);
is_altrep_ = ALTREP(data_);
data_p_ = (data_ == R_NilValue) ? nullptr : get_p(is_altrep_, data_);
length_ = rhs.length_;
capacity_ = rhs.capacity_;
detail::store::release(old_protect);
return *this;
}
template <typename T>
inline r_vector<T>& r_vector<T>::operator=(r_vector&& rhs) {
if (data_ == rhs.data_) {
return *this;
}
// Call parent read only move assignment operator to move
// all other properties, including protection handling
cpp11::r_vector<T>::operator=(std::move(rhs));
// Handle fields specific to writable
capacity_ = rhs.capacity_;
rhs.capacity_ = 0;
return *this;
}
template <typename T>
inline r_vector<T>::operator SEXP() const {
// Throwing away the const-ness is a bit gross, but we only modify
// internal details here, and updating the internal data after we resize allows
// statements like `Rf_setAttrib(<r_vector>, name, value)` to make sense, where
// people expect that the SEXP inside the `<r_vector>` gets the updated attribute.
auto* p = const_cast<r_vector<T>*>(this);
if (data_ == R_NilValue) {
// Specially call out the `NULL` case, which can occur if immediately
// returning a default constructed writable `r_vector` as a `SEXP`.
p->resize(0);
return data_;
}
if (length_ < capacity_) {
// Truncate the vector to its `length_`. This unfortunately typically forces
// an allocation if the user has called `push_back()` on a writable
// `r_vector`. Importantly, going through `resize()` updates: `data_` and
// protection of it, `data_p_`, and `capacity_`.
p->resize(length_);
return data_;
}
return data_;
}
#ifdef LONG_VECTOR_SUPPORT
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::operator[](const int pos) const {
return operator[](static_cast<R_xlen_t>(pos));
}
#endif
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::operator[](const R_xlen_t pos) const {
if (is_altrep_) {
return {data_, pos, nullptr, true};
}
return {data_, pos, data_p_ != nullptr ? &data_p_[pos] : nullptr, false};
}
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::operator[](const size_type pos) const {
return operator[](static_cast<R_xlen_t>(pos));
}
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::operator[](const r_string& name) const {
SEXP names = PROTECT(this->names());
R_xlen_t size = Rf_xlength(names);
for (R_xlen_t pos = 0; pos < size; ++pos) {
auto cur = Rf_translateCharUTF8(STRING_ELT(names, pos));
if (name == cur) {
UNPROTECT(1);
return operator[](pos);
}
}
UNPROTECT(1);
throw std::out_of_range("r_vector");
}
#ifdef LONG_VECTOR_SUPPORT
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::at(const int pos) const {
return at(static_cast<R_xlen_t>(pos));
}
#endif
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::at(const R_xlen_t pos) const {
if (pos < 0 || pos >= length_) {
throw std::out_of_range("r_vector");
}
return operator[](static_cast<R_xlen_t>(pos));
}
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::at(const size_type pos) const {
return at(static_cast<R_xlen_t>(pos));
}
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::at(const r_string& name) const {
return operator[](name);
}
template <typename T>
inline void r_vector<T>::push_back(T value) {
while (length_ >= capacity_) {
reserve(capacity_ == 0 ? 1 : capacity_ *= 2);
}
if (data_p_ != nullptr) {
data_p_[length_] = static_cast<underlying_type>(value);
} else {
set_elt(data_, length_, static_cast<underlying_type>(value));
}
++length_;
}
template <typename T>
inline void r_vector<T>::pop_back() {
--length_;
}
template <typename T>
inline void r_vector<T>::resize(R_xlen_t count) {
reserve(count);
length_ = count;
}
/// Reserve a new capacity and copy all elements over
///
/// SAFETY: The new capacity is allowed to be smaller than the current capacity, which
/// is used in the `SEXP` conversion operator during truncation, but if that occurs then
/// we also need to update the `length_`, so if you need to truncate then you should call
/// `resize()` instead.
template <typename T>
inline void r_vector<T>::reserve(R_xlen_t new_capacity) {
SEXP old_protect = protect_;
data_ = (data_ == R_NilValue) ? safe[Rf_allocVector](get_sexptype(), new_capacity)
: reserve_data(data_, is_altrep_, new_capacity);
protect_ = detail::store::insert(data_);
is_altrep_ = ALTREP(data_);
data_p_ = get_p(is_altrep_, data_);
capacity_ = new_capacity;
detail::store::release(old_protect);
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::insert(R_xlen_t pos, T value) {
push_back(value);
R_xlen_t i = length_ - 1;
while (i > pos) {
operator[](i) = (T) operator[](i - 1);
--i;
};
operator[](pos) = value;
return begin() + pos;
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::erase(R_xlen_t pos) {
R_xlen_t i = pos;
while (i < length_ - 1) {
operator[](i) = (T) operator[](i + 1);
++i;
}
pop_back();
return begin() + pos;
}
template <typename T>
inline void r_vector<T>::clear() {
length_ = 0;
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::begin() const {
return iterator(this, 0);
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::end() const {
return iterator(this, length_);
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::find(const r_string& name) const {
SEXP names = PROTECT(this->names());
R_xlen_t size = Rf_xlength(names);
for (R_xlen_t pos = 0; pos < size; ++pos) {
auto cur = Rf_translateCharUTF8(STRING_ELT(names, pos));
if (name == cur) {
UNPROTECT(1);
return begin() + pos;
}
}
UNPROTECT(1);
return end();
}
template <typename T>
inline attribute_proxy<r_vector<T>> r_vector<T>::attr(const char* name) const {
return attribute_proxy<r_vector<T>>(*this, name);
}
template <typename T>
inline attribute_proxy<r_vector<T>> r_vector<T>::attr(const std::string& name) const {
return attribute_proxy<r_vector<T>>(*this, name.c_str());
}
template <typename T>
inline attribute_proxy<r_vector<T>> r_vector<T>::attr(SEXP name) const {
return attribute_proxy<r_vector<T>>(*this, name);
}
template <typename T>
inline attribute_proxy<r_vector<T>> r_vector<T>::names() const {
return attribute_proxy<r_vector<T>>(*this, R_NamesSymbol);
}
template <typename T>
r_vector<T>::proxy::proxy(SEXP data, const R_xlen_t index,
typename r_vector::underlying_type* const p, bool is_altrep)
: data_(data), index_(index), p_(p), is_altrep_(is_altrep) {}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator=(const proxy& rhs) {
const underlying_type elt = rhs.get();
set(elt);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator=(const T& rhs) {
const underlying_type elt = static_cast<underlying_type>(rhs);
set(elt);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator+=(const T& rhs) {
operator=(static_cast<T>(*this) + rhs);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator-=(const T& rhs) {
operator=(static_cast<T>(*this) - rhs);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator*=(const T& rhs) {
operator=(static_cast<T>(*this) * rhs);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator/=(const T& rhs) {
operator=(static_cast<T>(*this) / rhs);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator++(int) {
operator=(static_cast<T>(*this) + 1);
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy& r_vector<T>::proxy::operator--(int) {
operator=(static_cast<T>(*this) - 1);
return *this;
}
template <typename T>
inline void r_vector<T>::proxy::operator++() {
operator=(static_cast<T>(*this) + 1);
}
template <typename T>
inline void r_vector<T>::proxy::operator--() {
operator=(static_cast<T>(*this) - 1);
}
template <typename T>
inline r_vector<T>::proxy::operator T() const {
const underlying_type elt = get();
return static_cast<T>(elt);
}
template <typename T>
inline typename r_vector<T>::underlying_type r_vector<T>::proxy::get() const {
if (p_ != nullptr) {
return *p_;
} else {
// Handles ALTREP, VECSXP, and STRSXP cases
return r_vector::get_elt(data_, index_);
}
}
template <typename T>
inline void r_vector<T>::proxy::set(typename r_vector<T>::underlying_type x) {
if (p_ != nullptr) {
*p_ = x;
} else {
// Handles ALTREP, VECSXP, and STRSXP cases
set_elt(data_, index_, x);
}
}
template <typename T>
r_vector<T>::iterator::iterator(const r_vector* data, R_xlen_t pos)
: r_vector::const_iterator(data, pos) {}
template <typename T>
inline typename r_vector<T>::iterator& r_vector<T>::iterator::operator++() {
++pos_;
if (use_buf(data_->is_altrep()) && pos_ >= block_start_ + length_) {
fill_buf(pos_);
}
return *this;
}
template <typename T>
inline typename r_vector<T>::proxy r_vector<T>::iterator::operator*() const {
if (use_buf(data_->is_altrep())) {
return proxy(
data_->data(), pos_,
const_cast<typename r_vector::underlying_type*>(&buf_[pos_ - block_start_]),
true);
} else {
return proxy(data_->data(), pos_,
data_->data_p_ != nullptr ? &data_->data_p_[pos_] : nullptr, false);
}
}
template <typename T>
inline typename r_vector<T>::iterator& r_vector<T>::iterator::operator+=(R_xlen_t rhs) {
pos_ += rhs;
if (use_buf(data_->is_altrep()) && pos_ >= block_start_ + length_) {
fill_buf(pos_);
}
return *this;
}
template <typename T>
inline typename r_vector<T>::iterator r_vector<T>::iterator::operator+(R_xlen_t rhs) {
auto it = *this;
it += rhs;
return it;
}
/// Compared to `Rf_xlengthgets()`:
/// - This copies over attributes with `Rf_copyMostAttrib()`, which is important when we
/// truncate right before returning from the `SEXP` operator.
/// - This always allocates, even if it is the same size.
/// - This is more friendly to ALTREP `x`.
///
/// SAFETY: For use only by `reserve()`! This won't retain the `dim` or `dimnames`
/// attributes (which doesn't make much sense anyways).
template <typename T>
inline SEXP r_vector<T>::reserve_data(SEXP x, bool is_altrep, R_xlen_t size) {
// Resize core data
SEXP out = PROTECT(resize_data(x, is_altrep, size));
// Resize names, if required
// Protection seems needed to make rchk happy
SEXP names = PROTECT(Rf_getAttrib(x, R_NamesSymbol));
if (names != R_NilValue) {
if (Rf_xlength(names) != size) {
names = resize_names(names, size);
}
Rf_setAttrib(out, R_NamesSymbol, names);
}
// Copy over "most" attributes, and set OBJECT bit and S4 bit as needed.
// Does not copy over names, dim, or dim names.
// Names are handled already. Dim and dim names should not be applicable,
// as this is a vector.
// Does not look like it would ever error in our use cases, so no `safe[]`.
Rf_copyMostAttrib(x, out);
UNPROTECT(2);
return out;
}
template <typename T>
inline SEXP r_vector<T>::resize_data(SEXP x, bool is_altrep, R_xlen_t size) {
underlying_type const* v_x = get_const_p(is_altrep, x);
SEXP out = PROTECT(safe[Rf_allocVector](get_sexptype(), size));
underlying_type* v_out = get_p(ALTREP(out), out);
const R_xlen_t x_size = Rf_xlength(x);
const R_xlen_t copy_size = (x_size > size) ? size : x_size;
// Copy over data from `x` up to `copy_size` (we could be truncating so don't blindly
// copy everything from `x`)
if (v_x != nullptr && v_out != nullptr) {
std::memcpy(v_out, v_x, copy_size * sizeof(underlying_type));
} else {
// Handles ALTREP `x` with no const pointer, VECSXP, STRSXP
for (R_xlen_t i = 0; i < copy_size; ++i) {
set_elt(out, i, get_elt(x, i));
}
}
UNPROTECT(1);
return out;
}
template <typename T>
inline SEXP r_vector<T>::resize_names(SEXP x, R_xlen_t size) {
const SEXP* v_x = STRING_PTR_RO(x);
SEXP out = PROTECT(safe[Rf_allocVector](STRSXP, size));
const R_xlen_t x_size = Rf_xlength(x);
const R_xlen_t copy_size = (x_size > size) ? size : x_size;
for (R_xlen_t i = 0; i < copy_size; ++i) {
SET_STRING_ELT(out, i, v_x[i]);
}
// Ensure remaining names are initialized to `""`
for (R_xlen_t i = copy_size; i < size; ++i) {
SET_STRING_ELT(out, i, R_BlankString);
}
UNPROTECT(1);
return out;
}
} // namespace writable
// TODO: is there a better condition we could use, e.g. assert something true
// rather than three things false?
template <typename C, typename T>
using is_container_but_not_sexp_or_string = typename std::enable_if<
!std::is_constructible<C, SEXP>::value &&
!std::is_same<typename std::decay<C>::type, std::string>::value &&
!std::is_same<typename std::decay<T>::type, std::string>::value,
typename std::decay<C>::type>::type;
template <typename C, typename T = typename std::decay<C>::type::value_type>
// typename T = typename C::value_type>
is_container_but_not_sexp_or_string<C, T> as_cpp(SEXP from) {
auto obj = cpp11::r_vector<T>(from);
return {obj.begin(), obj.end()};
}
// TODO: could we make this generalize outside of std::string?
template <typename C, typename T = C>
using is_vector_of_strings = typename std::enable_if<
std::is_same<typename std::decay<T>::type, std::string>::value,
typename std::decay<C>::type>::type;
template <typename C, typename T = typename std::decay<C>::type::value_type>
// typename T = typename C::value_type>
is_vector_of_strings<C, T> as_cpp(SEXP from) {
auto obj = cpp11::r_vector<cpp11::r_string>(from);
typename std::decay<C>::type res;
auto it = obj.begin();
while (it != obj.end()) {
r_string s = *it;
res.emplace_back(static_cast<std::string>(s));
++it;
}
return res;
}
template <typename T>
bool operator==(const r_vector<T>& lhs, const r_vector<T>& rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
auto lhs_it = lhs.begin();
auto rhs_it = rhs.begin();
auto end = lhs.end();
while (lhs_it != end) {
if (!(*lhs_it == *rhs_it)) {
return false;
}
++lhs_it;
++rhs_it;
}
return true;
}
template <typename T>
bool operator!=(const r_vector<T>& lhs, const r_vector<T>& rhs) {
return !(lhs == rhs);
}
} // namespace cpp11
|