File: plot.gmci.Rd

package info (click to toggle)
r-cran-ctmcd 1.4.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 1,384 kB
  • sloc: cpp: 183; ansic: 19; makefile: 2
file content (80 lines) | stat: -rw-r--r-- 1,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\name{plot.gmci}
\alias{plot.gmci}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
Plot Function for Generator Matrix Confidence / Credibility Interval Objects
}
\description{
Function for visualizing the boundaries of generator matrix confidence / credibility intervals
}
\usage{
\method{plot}{gmci}(x, mattext, col = c("grey", "red"), main, las = 1, xlab = "To",
ylab = "From", xnames, ynames, cex = 1, fig = 2, opacity_factor, ...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{x}{
a generator matrix confidence / credibility interval object
}
  \item{mattext}{
optional: matrix of strings replacing the parameter estimates
}
  \item{col}{
two element vector of basis colors for positive and negative parameter estimate entries
}
  \item{main}{
optional: plot title
}
  \item{las}{
orientation of x and y axis elements
}
  \item{xlab}{
x axis name
}
  \item{ylab}{
y axis name
}
  \item{xnames}{
description of x axis elements
}
  \item{ynames}{
description of y axis elements
}
  \item{cex}{
font size
}
  \item{fig}{
number of significant figures to be plotted
}
  \item{opacity_factor}{
two element vector for specification of opacity for positive and negative parameter entry highlighting (must be greater than zero)

}
  \item{\dots}{
additional arguments
}
}
\author{
Marius Pfeuffer
}
\seealso{
\code{\link{print.gmci}}, \code{\link{plotM}}
}
\examples{
\dontrun{
data(tm_abs)

## Maximum Likelihood Generator Matrix Estimate
gm0=matrix(1,8,8)
diag(gm0)=0
diag(gm0)=-rowSums(gm0)
gm0[8,]=0

gmem=gm(tm_abs,te=1,method="EM",gmguess=gm0)
plot(gmem)

## Confidence Interval
ciem=gmci(gmem,alpha=0.05)
plot(ciem)
}
}