1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
rollup <- function(x, ...) {
UseMethod("rollup")
}
rollup.data.table <- function(x, j, by, .SDcols, id = FALSE, ...) {
# input data type basic validation
if (!is.data.table(x))
stop("Argument 'x' must be a data.table object")
if (!is.character(by))
stop("Argument 'by' must be a character vector of column names used in grouping.")
if (!is.logical(id))
stop("Argument 'id' must be a logical scalar.")
# generate grouping sets for rollup
sets = lapply(length(by):0L, function(i) by[0L:i])
# redirect to workhorse function
jj = substitute(j)
groupingsets.data.table(x, by=by, sets=sets, .SDcols=.SDcols, id=id, jj=jj)
}
cube <- function(x, ...) {
UseMethod("cube")
}
cube.data.table <- function(x, j, by, .SDcols, id = FALSE, ...) {
# input data type basic validation
if (!is.data.table(x))
stop("Argument 'x' must be a data.table object")
if (!is.character(by))
stop("Argument 'by' must be a character vector of column names used in grouping.")
if (!is.logical(id))
stop("Argument 'id' must be a logical scalar.")
# generate grouping sets for cube - power set: http://stackoverflow.com/a/32187892/2490497
n = length(by)
keepBool = sapply(2L^(seq_len(n)-1L), function(k) rep(c(FALSE, TRUE), times=k, each=((2L^n)/(2L*k))))
sets = lapply((2L^n):1L, function(j) by[keepBool[j, ]])
# redirect to workhorse function
jj = substitute(j)
groupingsets.data.table(x, by=by, sets=sets, .SDcols=.SDcols, id=id, jj=jj)
}
groupingsets <- function(x, ...) {
UseMethod("groupingsets")
}
groupingsets.data.table <- function(x, j, by, sets, .SDcols, id = FALSE, jj, ...) {
# input data type basic validation
if (!is.data.table(x))
stop("Argument 'x' must be a data.table object")
if (ncol(x) < 1L)
stop("Argument 'x' is a 0-column data.table; no measure to apply grouping over.")
if (anyDuplicated(names(x)) > 0L)
stop("Input data.table must not contain duplicate column names.")
if (!is.character(by))
stop("Argument 'by' must be a character vector of column names used in grouping.")
if (anyDuplicated(by) > 0L)
stop("Argument 'by' must have unique column names for grouping.")
if (!is.list(sets) || !all(sapply(sets, is.character)))
stop("Argument 'sets' must be a list of character vectors.")
if (!is.logical(id))
stop("Argument 'id' must be a logical scalar.")
# logic constraints validation
if (!all((sets.all.by <- unique(unlist(sets))) %chin% by))
stop("All columns used in 'sets' argument must be in 'by' too. Columns used in 'sets' but not present in 'by': ", brackify(setdiff(sets.all.by, by)))
if (id && "grouping" %chin% names(x))
stop("When using `id=TRUE` the 'x' data.table must not have a column named 'grouping'.")
if (!all(sapply(sets, function(x) length(x)==uniqueN(x))))
stop("Character vectors in 'sets' list must not have duplicated column names within a single grouping set.")
if (!identical(lapply(sets, sort), unique(lapply(sets, sort))))
warning("Double counting is going to happen. Argument 'sets' should be unique without taking order into account, unless you really want double counting, then get used to that warning. Otherwise `sets=unique(lapply(sets, sort))` will do the trick.")
# input arguments handling
jj = if (!missing(jj)) jj else substitute(j)
av = all.vars(jj, TRUE)
if (":=" %chin% av)
stop("Expression passed to grouping sets function must not update by reference. Use ':=' on results of your grouping function.")
if (missing(.SDcols))
.SDcols = if (".SD" %chin% av) setdiff(names(x), by) else NULL
# 0 rows template data.table to keep colorder and type
if (length(by)) {
empty = if (length(.SDcols)) x[0L, eval(jj), by, .SDcols=.SDcols] else x[0L, eval(jj), by]
} else {
empty = if (length(.SDcols)) x[0L, eval(jj), .SDcols=.SDcols] else x[0L, eval(jj)]
if (!is.data.table(empty)) {
if (length(empty)>0) empty = empty[0L] # fix for #3173 when no grouping and j constant
empty = setDT(list(empty)) # improve after #648, see comment in aggregate.set
}
}
if (id && "grouping" %chin% names(empty)) # `j` could have been evaluated to `grouping` field
stop("When using `id=TRUE` the 'j' expression must not evaluate to column named 'grouping'.")
if (anyDuplicated(names(empty)) > 0L)
stop("There exists duplicated column names in the results, ensure the column passed/evaluated in `j` and those in `by` are not overlapping.")
# adding grouping column to template - aggregation level identifier
if (id) {
set(empty, j = "grouping", value = integer())
setcolorder(empty, c("grouping", by, setdiff(names(empty), c("grouping", by))))
}
# workaround for rbindlist fill=TRUE on integer64 #1459
int64.cols = vapply(empty, inherits, logical(1L), "integer64")
int64.cols = names(int64.cols)[int64.cols]
if (length(int64.cols) && !requireNamespace("bit64", quietly=TRUE))
stop("Using integer64 class columns require to have 'bit64' package installed.")
int64.by.cols = intersect(int64.cols, by)
# aggregate function called for each grouping set
aggregate.set <- function(by.set) {
if (length(by.set)) {
r = if (length(.SDcols)) x[, eval(jj), by.set, .SDcols=.SDcols] else x[, eval(jj), by.set]
} else {
r = if (length(.SDcols)) x[, eval(jj), .SDcols=.SDcols] else x[, eval(jj)]
# workaround for grand total single var as data.table too, change to drop=FALSE after #648 solved
if (!is.data.table(r)) r = setDT(list(r))
}
if (id) {
# integer bit mask of aggregation levels: http://www.postgresql.org/docs/9.5/static/functions-aggregate.html#FUNCTIONS-GROUPING-TABLE
# 3267: strtoi("", base = 2L) output apparently unstable across platforms
i_str = paste(c("1", "0")[by %chin% by.set + 1L], collapse="")
set(r, j = "grouping", value = if (nzchar(i_str)) strtoi(i_str, base=2L) else 0L)
}
if (length(int64.by.cols)) {
# workaround for rbindlist fill=TRUE on integer64 #1459
missing.int64.by.cols = setdiff(int64.by.cols, by.set)
if (length(missing.int64.by.cols)) r[, (missing.int64.by.cols) := bit64::as.integer64(NA)]
}
r
}
# actually processing everything here
rbindlist(c(
list(empty), # 0 rows template for colorder and type
lapply(sets, aggregate.set) # all aggregations
), use.names=TRUE, fill=TRUE)
}
|