1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
# For internal use only (input symbol requirement is not checked)
# cols [symbol] - columns provided to function argument
# dt [symbol] - a data.table
# Iff all of 'cols' is present in 'x' return col indices
# is.data.table(dt) check should be performed in the calling function
validate <- function(cols, dt) {
argcols = deparse(substitute(cols))
argdt = deparse(substitute(dt))
origcols = cols
if (is.character(cols)) cols = chmatch(cols, names(dt))
cols = as.integer(cols)
isna = which(!cols %in% seq_along(dt))
if (length(isna))
stop(argcols, " value", if (length(isna) > 1L) 's ' else ' ',
brackify(origcols[isna]), " not present (or out of range) in ", argdt)
cols
}
# setdiff for data.tables, internal at the moment #547, used in not-join
setdiff_ <- function(x, y, by.x=seq_along(x), by.y=seq_along(y), use.names=FALSE) {
if (!is.data.table(x) || !is.data.table(y)) stop("x and y must both be data.tables")
# !ncol redundant since all 0-column data.tables have 0 rows
if (!nrow(x)) return(x)
by.x = validate(by.x, x)
if (!nrow(y)) return(unique(x, by=by.x))
by.y = validate(by.y, y)
if (length(by.x) != length(by.y)) stop("length(by.x) != length(by.y)")
# factor in x should've factor/character in y, and viceversa
for (a in seq_along(by.x)) {
lc = by.y[a]
rc = by.x[a]
icnam = names(y)[lc]
xcnam = names(x)[rc]
if ( is.character(x[[rc]]) && !(is.character(y[[lc]]) || is.factor(y[[lc]])) ) {
stop("When x's column ('",xcnam,"') is character, the corresponding column in y ('",icnam,"') should be factor or character, but found incompatible type '",typeof(y[[lc]]),"'.")
} else if ( is.factor(x[[rc]]) && !(is.character(y[[lc]]) || is.factor(y[[lc]])) ) {
stop("When x's column ('",xcnam,"') is factor, the corresponding column in y ('",icnam,"') should be character or factor, but found incompatible type '",typeof(y[[lc]]),"'.")
} else if ( (is.integer(x[[rc]]) || is.double(x[[rc]])) && (is.logical(y[[lc]]) || is.character(y[[lc]])) ) {
stop("When x's column ('",xcnam,"') is integer or numeric, the corresponding column in y ('",icnam,"') can not be character or logical types, but found incompatible type '",typeof(y[[lc]]),"'.")
}
}
ux = unique(shallow(x, by.x))
uy = unique(shallow(y, by.y))
ix = duplicated(rbind(uy, ux, use.names=use.names, fill=FALSE))[-seq_len(nrow(uy))]
.Call(CsubsetDT, ux, which_(ix, FALSE), seq_along(ux)) # more memory efficient version of which(!ix)
}
# set operators ----
funique <- function(x) {
stopifnot(is.data.table(x))
dup = duplicated(x)
if (any(dup)) .Call(CsubsetDT, x, which_(dup, FALSE), seq_along(x)) else x
}
.set_ops_arg_check = function(x, y, all, .seqn = FALSE, block_list = TRUE) {
if (!is.logical(all) || length(all) != 1L) stop("argument 'all' should be logical of length one")
if (!is.data.table(x) || !is.data.table(y)) stop("x and y must both be data.tables")
if (!identical(sort(names(x)), sort(names(y)))) stop("x and y must have the same column names")
if (!identical(names(x), names(y))) stop("x and y must have the same column order")
bad_types = c("raw", "complex", if (block_list) "list")
found = bad_types %chin% c(vapply(x, typeof, FUN.VALUE = ""),
vapply(y, typeof, FUN.VALUE = ""))
if (any(found)) stop("unsupported column type", if (sum(found) > 1L) "s" else "",
" found in x or y: ", brackify(bad_types[found]))
if (!identical(lapply(x, class), lapply(y, class))) stop("x and y must have the same column classes")
if (.seqn && ".seqn" %chin% names(x)) stop("None of the datasets should contain a column named '.seqn'")
}
fintersect <- function(x, y, all=FALSE) {
.set_ops_arg_check(x, y, all, .seqn = TRUE)
if (!nrow(x) || !nrow(y)) return(x[0L])
if (all) {
x = shallow(x)[, ".seqn" := rowidv(x)]
y = shallow(y)[, ".seqn" := rowidv(y)]
jn.on = c(".seqn",setdiff(names(x),".seqn"))
x[y, .SD, .SDcols=setdiff(names(x),".seqn"), nomatch=NULL, on=jn.on]
} else {
z = funique(y) # fixes #3034. When .. prefix in i= is implemented (TODO), this can be x[funique(..y), on=, multi=]
x[z, nomatch=NULL, on=names(x), mult="first"]
}
}
fsetdiff <- function(x, y, all=FALSE) {
.set_ops_arg_check(x, y, all, .seqn = TRUE)
if (!nrow(x)) return(x)
if (!nrow(y)) return(if (!all) funique(x) else x)
if (all) {
x = shallow(x)[, ".seqn" := rowidv(x)]
y = shallow(y)[, ".seqn" := rowidv(y)]
jn.on = c(".seqn",setdiff(names(x),".seqn"))
x[!y, .SD, .SDcols=setdiff(names(x),".seqn"), on=jn.on]
} else {
funique(x[!y, on=names(x)])
}
}
funion <- function(x, y, all=FALSE) {
.set_ops_arg_check(x, y, all, block_list = !all)
ans = rbindlist(list(x, y))
if (!all) ans = funique(ans)
ans
}
fsetequal <- function(x, y, all=TRUE) {
.set_ops_arg_check(x, y, all)
if (!all) {
x = funique(x)
y = funique(y)
}
isTRUE(all.equal.data.table(x, y, check.attributes = FALSE, ignore.row.order = TRUE))
}
# all.equal ----
all.equal.data.table <- function(target, current, trim.levels=TRUE, check.attributes=TRUE, ignore.col.order=FALSE, ignore.row.order=FALSE, tolerance=sqrt(.Machine$double.eps), ...) {
stopifnot(is.logical(trim.levels), is.logical(check.attributes), is.logical(ignore.col.order), is.logical(ignore.row.order), is.numeric(tolerance))
if (!is.data.table(target) || !is.data.table(current)) stop("'target' and 'current' must both be data.tables")
msg = character(0L)
# init checks that detect high level all.equal
if (nrow(current) != nrow(target)) msg = "Different number of rows"
if (ncol(current) != ncol(target)) msg = c(msg, "Different number of columns")
diff.colnames = !identical(sort(names(target)), sort(names(current)))
diff.colorder = !identical(names(target), names(current))
if (check.attributes && diff.colnames) msg = c(msg, "Different column names")
if (!diff.colnames && !ignore.col.order && diff.colorder) msg = c(msg, "Different column order")
if (length(msg)) return(msg) # skip check.attributes and further heavy processing
# ignore.col.order
if (ignore.col.order && diff.colorder) current = setcolorder(shallow(current), names(target))
# Always check modes equal, like base::all.equal
targetModes = vapply_1c(target, mode)
currentModes = vapply_1c(current, mode)
if (any( d<-(targetModes!=currentModes) )) {
w = head(which(d),3L)
return(paste0("Datasets have different column modes. First 3: ",paste(
paste0(names(targetModes)[w],"(",paste(targetModes[w],currentModes[w],sep="!="),")")
,collapse=" ")))
}
if (check.attributes) {
squashClass = function(x) if (is.object(x)) paste(class(x),collapse=";") else mode(x)
# else mode() is so that integer==numeric, like base all.equal does.
targetTypes = vapply_1c(target, squashClass)
currentTypes = vapply_1c(current, squashClass)
if (length(targetTypes) != length(currentTypes))
stop("Internal error: ncol(current)==ncol(target) was checked above") # nocov
if (any( d<-(targetTypes != currentTypes))) {
w = head(which(d),3L)
return(paste0("Datasets have different column classes. First 3: ",paste(
paste0(names(targetTypes)[w],"(",paste(targetTypes[w],currentTypes[w],sep="!="),")")
,collapse=" ")))
}
# check key
k1 = key(target)
k2 = key(current)
if (!identical(k1, k2)) {
return(sprintf("Datasets has different keys. 'target'%s. 'current'%s.",
if(length(k1)) paste0(": ", paste(k1, collapse=", ")) else " has no key",
if(length(k2)) paste0(": ", paste(k2, collapse=", ")) else " has no key"))
}
# check index
i1 = indices(target)
i2 = indices(current)
if (!identical(i1, i2)) {
return(sprintf("Datasets has different indexes. 'target'%s. 'current'%s.",
if(length(i1)) paste0(": ", paste(i1, collapse=", ")) else " has no index",
if(length(i2)) paste0(": ", paste(i2, collapse=", ")) else " has no index"))
}
# Trim any extra row.names attributes that came from some inheritence
# Trim ".internal.selfref" as long as there is no `all.equal.externalptr` method
exclude.attrs = function(x, attrs = c("row.names",".internal.selfref")) x[!names(x) %chin% attrs]
a1 = exclude.attrs(attributes(target))
a2 = exclude.attrs(attributes(current))
if (length(a1) != length(a2)) return(sprintf("Datasets has different number of (non-excluded) attributes: target %s, current %s", length(a1), length(a2)))
if (!identical(nm1 <- sort(names(a1)), nm2 <- sort(names(a2)))) return(sprintf("Datasets has attributes with different names: %s", paste(setdiff(union(names(a1), names(a2)), intersect(names(a1), names(a2))), collapse=", ")))
attrs.r = all.equal(a1[nm1], a2[nm2], ..., check.attributes = check.attributes)
if (is.character(attrs.r)) return(paste("Attributes: <", attrs.r, ">")) # skip further heavy processing
}
if (ignore.row.order) {
if (".seqn" %chin% names(target))
stop("None of the datasets to compare should contain a column named '.seqn'")
bad.type = setNames(c("raw","complex","list") %chin% c(vapply(current, typeof, FUN.VALUE = ""), vapply(target, typeof, FUN.VALUE = "")), c("raw","complex","list"))
if (any(bad.type))
stop("Datasets to compare with 'ignore.row.order' must not have unsupported column types: ", brackify(names(bad.type)[bad.type]))
if (between(tolerance, 0, sqrt(.Machine$double.eps), incbounds=FALSE)) {
warning("Argument 'tolerance' was forced to lowest accepted value `sqrt(.Machine$double.eps)` from provided ", format(tolerance, scientific=FALSE))
tolerance = sqrt(.Machine$double.eps)
}
target_dup = as.logical(anyDuplicated(target))
current_dup = as.logical(anyDuplicated(current))
tolerance.msg = if (identical(tolerance, 0)) ", be aware you are using `tolerance=0` which may result into visually equal data" else ""
if (target_dup || current_dup) {
# handling 'tolerance' for duplicate rows - those `msg` will be returned only when equality with tolerance will fail
if (any(vapply_1c(target,typeof)=="double") && !identical(tolerance, 0)) {
if (target_dup && !current_dup) msg = c(msg, "Dataset 'target' has duplicate rows while 'current' doesn't")
else if (!target_dup && current_dup) msg = c(msg, "Dataset 'current' has duplicate rows while 'target' doesn't")
else { # both
if (!identical(tolerance, sqrt(.Machine$double.eps))) # non-default will raise error
stop("Duplicate rows in datasets, numeric columns and ignore.row.order cannot be used with non 0 tolerance argument")
msg = c(msg, "Both datasets have duplicate rows, they also have numeric columns, together with ignore.row.order this force 'tolerance' argument to 0")
tolerance = 0
}
} else { # no numeric columns or tolerance==0L
if (target_dup && !current_dup)
return(sprintf("Dataset 'target' has duplicate rows while 'current' doesn't%s", tolerance.msg))
if (!target_dup && current_dup)
return(sprintf("Dataset 'current' has duplicate rows while 'target' doesn't%s", tolerance.msg))
}
}
# handling 'tolerance' for factor cols - those `msg` will be returned only when equality with tolerance will fail
if (any(vapply_1b(target,is.factor)) && !identical(tolerance, 0)) {
if (!identical(tolerance, sqrt(.Machine$double.eps))) # non-default will raise error
stop("Factor columns and ignore.row.order cannot be used with non 0 tolerance argument")
msg = c(msg, "Using factor columns together together with ignore.row.order, this force 'tolerance' argument to 0")
tolerance = 0
}
jn.on = copy(names(target)) # default, possible altered later on
char.cols = vapply_1c(target,typeof)=="character"
if (!identical(tolerance, 0)) { # handling character columns only for tolerance!=0
if (all(char.cols)) {
msg = c(msg, "Both datasets have character columns only, together with ignore.row.order this force 'tolerance' argument to 0, for character columns it does not have effect")
tolerance = 0
} else if (any(char.cols)) { # character col cannot be the last one during rolling join
jn.on = jn.on[c(which(char.cols), which(!char.cols))]
}
}
if (target_dup && current_dup) {
target = shallow(target)[, ".seqn" := rowidv(target)]
current = shallow(current)[, ".seqn" := rowidv(current)]
jn.on = c(".seqn", jn.on)
}
# roll join to support 'tolerance' argument, conditional to retain support for factor when tolerance=0
ans = if (identical(tolerance, 0)) target[current, nomatch=NA, which=TRUE, on=jn.on] else {
ans1 = target[current, roll=tolerance, rollends=TRUE, which=TRUE, on=jn.on]
ans2 = target[current, roll=-tolerance, rollends=TRUE, which=TRUE, on=jn.on]
pmin(ans1, ans2, na.rm=TRUE)
}
if (any_na(as_list(ans))) {
msg = c(msg, sprintf("Dataset 'current' has rows not present in 'target'%s%s", if (target_dup || current_dup) " or present in different quantity" else "", tolerance.msg))
return(msg)
}
# rolling join other way around
ans = if (identical(tolerance, 0)) current[target, nomatch=NA, which=TRUE, on=jn.on] else {
ans1 = current[target, roll=tolerance, rollends=TRUE, which=TRUE, on=jn.on]
ans2 = current[target, roll=-tolerance, rollends=TRUE, which=TRUE, on=jn.on]
pmin(ans1, ans2, na.rm=TRUE)
}
if (any_na(as_list(ans))) {
msg = c(msg, sprintf("Dataset 'target' has rows not present in 'current'%s%s", if (target_dup || current_dup) " or present in different quantity" else "", tolerance.msg))
return(msg)
}
} else {
for (i in seq_along(target)) {
# trim.levels moved here
x = target[[i]]
y = current[[i]]
if (xor(is.factor(x),is.factor(y)))
stop("Internal error: factor type mismatch should have been caught earlier") # nocov
cols.r = TRUE
if (is.factor(x)) {
if (!identical(levels(x),levels(y))) {
if (trim.levels) {
# do this regardless of check.attributes (that's more about classes, checked above)
x = factor(x)
y = factor(y)
if (!identical(levels(x),levels(y)))
cols.r = "Levels not identical even after refactoring since trim.levels is TRUE"
} else {
cols.r = "Levels not identical. No attempt to refactor because trim.levels is FALSE"
}
} else {
cols.r = all.equal(x, y, check.attributes=check.attributes)
# the check.attributes here refers to everything other than the levels, which are always
# dealt with according to trim.levels
}
} else {
cols.r = all.equal(unclass(x), unclass(y), tolerance=tolerance, ..., check.attributes=check.attributes)
# classes were explicitly checked earlier above, so ignore classes here.
}
if (!isTRUE(cols.r)) return(paste0("Column '", names(target)[i], "': ", paste(cols.r,collapse=" ")))
}
}
TRUE
}
|