1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
## this file will be migrated to inst/tests/tests.Rraw when branch will be ready to merge
cc.used = all(sapply(c("test","froll"), exists))
if (!interactive() && !cc.used) {
library(data.table)
test = data.table:::test
froll = data.table:::froll
}
oldDTthreads = setDTthreads(1) # mimics CRAN check, tested also on 4 cores
## rolling features
#### atomic vectors input and single window returns atomic vectors
x = 1:6/2
ans1 = frollmean(x, 3)
ans2 = frollmean(x, 3, algo="exact")
expected = c(rep(NA_real_,2), seq(1,2.5,0.5))
test(9999.001, ans1, expected)
test(9999.002, ans2, expected)
#### multiple columns at once
d = as.data.table(list(1:6/2, 3:8/4))
ans1 = frollmean(d, 3)
ans2 = frollmean(d, 3, algo="exact")
expected = list(
c(rep(NA_real_,2), seq(1,2.5,0.5)),
c(rep(NA_real_,2), seq(1,1.75,0.25))
)
test(9999.003, ans1, expected)
test(9999.004, ans2, expected)
#### multiple windows at once
ans1 = frollmean(d[, .(V1)], c(3, 4))
ans2 = frollmean(d[, .(V1)], c(3, 4), algo="exact")
expected = list(
c(rep(NA_real_,2), seq(1,2.5,0.5)),
c(rep(NA_real_,3), seq(1.25,2.25,0.5))
)
test(9999.005, ans1, expected)
test(9999.006, ans2, expected)
#### multiple columns and multiple windows at once
ans1 = frollmean(d, c(3, 4))
ans2 = frollmean(d, c(3, 4), algo="exact")
expected = list(
c(rep(NA_real_,2), seq(1,2.5,0.5)), c(rep(NA_real_,3), seq(1.25,2.25,0.5)),
c(rep(NA_real_,2), seq(1,1.75,0.25)), c(rep(NA_real_,3), seq(1.125,1.625,0.25))
)
test(9999.007, ans1, expected)
test(9999.008, ans2, expected)
#### in x integer converted to double
di = data.table(real=1:10/2, int=1:10)
ans = frollmean(di, 3)
expected = list(
c(rep(NA_real_,2), seq(1,4.5,0.5)),
c(rep(NA_real_,2), seq(2,9,1))
)
test(9999.009, ans, expected)
#### in n double converted to integer
x = 1:3/2
n = 2
test(9999.010, frollmean(x, n), c(NA, 0.75, 1.25))
n = list(c(2L,1L,2L), c(2,1,2))
test(9999.011, frollmean(x, n, adaptive=TRUE), list(c(NA, 1, 1.25), c(NA, 1, 1.25)))
#### error on unsupported type
dx = data.table(real=1:10/2, char=letters[1:10])
test(9999.012, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, fact=factor(letters[1:10]))
test(9999.013, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, logi=logical(10))
test(9999.014, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, list=rep(list(NA), 10))
test(9999.015, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
x = letters[1:10]
test(9999.016, frollmean(x, 3), error="x must be of type numeric")
x = 1:10/2
test(9999.017, frollmean(x, "a"), error="n must be integer")
test(9999.018, frollmean(x, factor("a")), error="n must be integer")
test(9999.019, frollmean(x, TRUE), error="n must be integer")
test(9999.020, frollmean(x, list(1:10)), error="n must be integer, list is accepted for adaptive TRUE")
test(9999.021, frollmean(x, list(NA), adaptive=TRUE), error="n must be integer vector or list of integer vectors")
test(9999.022, frollmean(x, list(c(1:5,1:5), NA), adaptive=TRUE), error="n must be integer vector or list of integer vectors")
#### various length list vectors
l = list(1:6/2, 3:10/4)
ans = frollmean(l, c(3, 4))
expected = list(
c(rep(NA_real_,2), seq(1,2.5,0.5)), c(rep(NA_real_,3), seq(1.25,2.25,0.5)),
c(rep(NA_real_,2), seq(1,2.25,0.25)), c(rep(NA_real_,3), seq(1.125,2.125,0.25))
)
test(9999.023, ans, expected)
#### exact
set.seed(108)
x = sample(c(rnorm(1e3, 1e6, 5e5), 5e9, 5e-9))
n = 15
ma = function(x, n, na.rm=FALSE) {
ans = rep(NA_real_, nx<-length(x))
for (i in n:nx) ans[i] = mean(x[(i-n+1):i], na.rm=na.rm)
ans
}
fastma = function(x, n, na.rm) {
if (!missing(na.rm)) stop("NAs are unsupported, wrongly propagated by cumsum")
cs = cumsum(x)
scs = shift(cs, n)
scs[n] = 0
as.double((cs-scs)/n)
}
ans1 = ma(x, n)
ans2 = fastma(x, n)
ans3 = frollmean(x, n, algo="exact")
ans4 = frollmean(x, n)
anserr = list(
froll_exact_f = ans4-ans1,
froll_exact_t = ans3-ans1,
fastma = ans2-ans1
)
errs = sapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.024, errs[["froll_exact_t"]]==0)
test(9999.025, errs[["froll_exact_f"]]>errs[["froll_exact_t"]])
test(9999.026, errs[["fastma"]]>errs[["froll_exact_t"]])
test(9999.027, errs[["fastma"]]>errs[["froll_exact_f"]])
#### align: right/center/left
d = as.data.table(list(1:8/2, 3:10/4))
ans1 = frollmean(d, 5, align="right") # default
ans2 = frollmean(d, 5, align="right", algo="exact")
expected = list(
c(rep(NA_real_,4), seq(1.5,3,0.5)),
c(rep(NA_real_,4), seq(1.25,2,0.25))
)
test(9999.028, ans1, expected)
test(9999.029, ans2, expected)
ans1 = frollmean(d, 5, align="center") # x even, n odd
ans2 = frollmean(d, 5, align="center", algo="exact")
expected = list(
c(rep(NA_real_, 2), seq(1.5,3,0.5), rep(NA_real_, 2)),
c(rep(NA_real_, 2), seq(1.25,2,0.25), rep(NA_real_, 2))
)
test(9999.030, ans1, expected)
test(9999.031, ans2, expected)
ans1 = frollmean(d, 6, align="center") # x even, n even
ans2 = frollmean(d, 6, align="center", algo="exact")
expected = list(
c(rep(NA_real_, 2), seq(1.75,2.75,0.5), rep(NA_real_,3)),
c(rep(NA_real_, 2), seq(1.375,1.875,0.25), rep(NA_real_,3))
)
test(9999.032, ans1, expected)
test(9999.033, ans2, expected)
de = rbind(d, data.table(4.5, 2.75))
ans1 = frollmean(de, 5, align="center") # x odd, n odd
ans2 = frollmean(de, 5, align="center", algo="exact")
expected = list(
c(rep(NA_real_, 2), seq(1.5,3.5,0.5), rep(NA_real_, 2)),
c(rep(NA_real_, 2), seq(1.25,2.25,0.25), rep(NA_real_, 2))
)
test(9999.034, ans1, expected)
test(9999.035, ans2, expected)
ans1 = frollmean(de, 6, align="center") # x odd, n even
ans2 = frollmean(de, 6, align="center", algo="exact")
expected = list(
c(rep(NA_real_, 2), seq(1.75,3.25,0.5), rep(NA_real_,3)),
c(rep(NA_real_, 2), seq(1.375,2.125,0.25), rep(NA_real_,3))
)
test(9999.036, ans1, expected)
test(9999.037, ans2, expected)
ans1 = frollmean(d, 5, align="left")
ans2 = frollmean(d, 5, align="left", algo="exact")
expected = list(
c(seq(1.5,3,0.5), rep(NA_real_,4)),
c(seq(1.25,2,0.25), rep(NA_real_,4))
)
test(9999.038, ans1, expected)
test(9999.039, ans2, expected)
#### handling NAs align na.rm
d = as.data.table(list(1:8/2, 3:10/4))
d[c(2L, 7L), "V1" := NA][c(1:2,8L), "V2" := NA]
ans1 = frollmean(d, 3, align="right") # default
ans2 = frollmean(d, 3, align="right", algo="exact")
expected = list(
c(rep(NA_real_,4), seq(2,2.5,0.5), rep(NA_real_, 2)),
c(rep(NA_real_,4), seq(1.5,2,0.25), rep(NA_real_, 1))
)
test(9999.040, ans1, expected)
test(9999.041, ans2, expected)
ans1 = frollmean(d, 3, align="right", na.rm=TRUE)
ans2 = frollmean(d, 3, align="right", algo="exact", na.rm=TRUE)
expected = list(
c(rep(NA_real_,2), 1, 1.75, 2, 2.5, 2.75, 3.5),
c(rep(NA_real_,2), 1.25, 1.375, 1.5, 1.75, 2, 2.125)
)
test(9999.042, ans1, expected)
test(9999.043, ans2, expected)
ans1 = frollmean(d, 3, align="center") # x even, n odd
ans2 = frollmean(d, 3, align="center", algo="exact")
expected = list(
c(rep(NA_real_,3), seq(2,2.5,0.5), rep(NA_real_, 3)),
c(rep(NA_real_,3), seq(1.5,2,0.25), rep(NA_real_, 2))
)
test(9999.044, ans1, expected)
test(9999.045, ans2, expected)
ans1 = frollmean(d, 3, align="center", na.rm=TRUE) # x even, n odd
ans2 = frollmean(d, 3, align="center", algo="exact", na.rm=TRUE)
expected = list(
c(rep(NA_real_,1), 1, 1.75, 2, 2.5, 2.75, 3.5, rep(NA_real_,1)),
c(rep(NA_real_,1), 1.25, 1.375, 1.5, 1.75, 2, 2.125, rep(NA_real_,1))
)
test(9999.046, ans1, expected)
test(9999.047, ans2, expected)
ans1 = frollmean(d, 4, align="center") # x even, n even
ans2 = frollmean(d, 4, align="center", algo="exact")
expected = list(
c(rep(NA_real_,3), 2.25, rep(NA_real_, 4)),
c(rep(NA_real_,3), 1.625, 1.875, rep(NA_real_, 3))
)
test(9999.048, ans1, expected)
test(9999.049, ans2, expected)
ans1 = frollmean(d, 4, align="center", na.rm=TRUE) # x even, n even
ans2 = frollmean(d, 4, align="center", algo="exact", na.rm=TRUE)
expected = list(
c(rep(NA_real_,1), 4/3, 2, 2.25, 2.5, 9.5/3, rep(NA_real_,2)),
c(rep(NA_real_,1), 1.375, 1.5, 1.625, 1.875, 2, rep(NA_real_,2))
)
test(9999.050, ans1, expected)
test(9999.051, ans2, expected)
de = rbind(d, data.table(4.5, 2.75))
ans1 = frollmean(de, 3, align="center") # x odd, n odd
ans2 = frollmean(de, 3, align="center", algo="exact")
expected = list(
c(rep(NA_real_,3), 2, 2.5, rep(NA_real_, 4)),
c(rep(NA_real_,3), 1.5, 1.75, 2, rep(NA_real_, 3))
)
test(9999.052, ans1, expected)
test(9999.053, ans2, expected)
ans1 = frollmean(de, 3, align="center", na.rm=TRUE) # x odd, n odd
ans2 = frollmean(de, 3, align="center", algo="exact", na.rm=TRUE)
expected = list(
c(rep(NA_real_,1), 1, 1.75, 2, 2.5, 2.75, 3.5, 4.25, rep(NA_real_,1)),
c(rep(NA_real_,1), 1.25, 1.375, 1.5, 1.75, 2, 2.125, 2.5, rep(NA_real_,1))
)
test(9999.054, ans1, expected)
test(9999.055, ans2, expected)
ans1 = frollmean(de, 4, align="center") # x odd, n even
ans2 = frollmean(de, 4, align="center", algo="exact")
expected = list(
c(rep(NA_real_, 3), 2.25, rep(NA_real_,5)),
c(rep(NA_real_, 3), 1.625, 1.875, rep(NA_real_,4))
)
test(9999.056, ans1, expected)
test(9999.057, ans2, expected)
ans1 = frollmean(de, 4, align="center", na.rm=TRUE) # x odd, n even
ans2 = frollmean(de, 4, align="center", algo="exact", na.rm=TRUE)
expected = list(
c(rep(NA_real_, 1), 4/3, 2, 2.25, 2.5, 9.5/3, 11.5/3, rep(NA_real_,2)),
c(rep(NA_real_, 1), 1.375, 1.5, 1.625, 1.875, 2, 7/3, rep(NA_real_,2))
)
test(9999.058, ans1, expected)
test(9999.059, ans2, expected)
ans1 = frollmean(d, 3, align="left")
ans2 = frollmean(d, 3, align="left", algo="exact")
expected = list(
c(rep(NA_real_, 2), 2, 2.5, rep(NA_real_,4)),
c(rep(NA_real_, 2), 1.5, 1.75, 2, rep(NA_real_,3))
)
test(9999.060, ans1, expected)
test(9999.061, ans2, expected)
ans1 = frollmean(d, 3, align="left", na.rm=TRUE)
ans2 = frollmean(d, 3, align="left", algo="exact", na.rm=TRUE)
expected = list(
c(1, 1.75, 2, 2.5, 2.75, 3.5, rep(NA_real_,2)),
c(1.25, 1.375, 1.5, 1.75, 2, 2.125, rep(NA_real_,2))
)
test(9999.062, ans1, expected)
test(9999.063, ans2, expected)
#### handling NAs for NaN output also
d = as.data.table(list(1:6/2, 3:8/4))
d[c(2L, 5L), V1:=NA][4:6, V2:=NA]
ans1 = frollmean(d, 2:3)
ans2 = frollmean(d, 2:3, algo="exact")
expected = list(c(NA, NA, NA, 1.75, NA, NA), rep(NA_real_, 6), c(NA, 0.875, 1.125, NA, NA, NA), c(NA, NA, 1, NA, NA, NA))
test(9999.064, ans1, expected)
test(9999.065, ans2, expected)
ans1 = frollmean(d, 2:3, na.rm=TRUE)
ans2 = frollmean(d, 2:3, algo="exact", na.rm=TRUE)
expected = list(c(NA, 0.5, 1.5, 1.75, 2, 3), c(NA, NA, 1, 1.75, 1.75, 2.5), c(NA, 0.875, 1.125, 1.25, NaN, NaN), c(NA, NA, 1, 1.125, 1.25, NaN))
test(9999.066, ans1, expected)
test(9999.067, ans2, expected)
#### early stopping NAs in leading k obs
test(9999.0671, frollmean(c(1:2,NA,4:10), 4, verbose=TRUE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 4, hasna 0, narm 0",
"frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs"
))
test(9999.0672, frollmean(c(1:2,NA,4:10), 4, hasNA=FALSE, verbose=TRUE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 4, hasna -1, narm 0",
"frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs"
), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.0673, ans<-frollmean(c(1:2,NA,4:10), 2, hasNA=FALSE, verbose=TRUE), c(NA, 1.5, NA, NA, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 2, hasna -1, narm 0",
"frollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.0674, frollmean(c(1:2,NA,4:10), 4, verbose=TRUE, align="center"), c(rep(NA_real_, 4), 5.5, 6.5, 7.5, 8.5, NA, NA), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 4, hasna 0, narm 0",
"frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs",
"frollmean: align 0, shift answer by -2"
))
#### fill constant
test(9999.068, frollmean(1:5, 4, fill=0), c(0, 0, 0, 2.5, 3.5))
test(9999.069, frollmean(1:5, 4, fill=-5), c(-5, -5, -5, 2.5, 3.5))
test(9999.070, frollmean(1:5, 4, fill=100), c(100, 100, 100, 2.5, 3.5))
test(9999.071, frollmean(1:5, 4, fill=Inf), c(Inf, Inf, Inf, 2.5, 3.5))
test(9999.072, frollmean(1:5, 4, fill=NaN), c(NaN, NaN, NaN, 2.5, 3.5))
#### fill coercion
test(9999.073, frollmean(1:3, 2, fill=0), c(0, 1.5, 2.5))
test(9999.074, frollmean(1:3, 2, fill=0L), c(0, 1.5, 2.5))
test(9999.075, frollmean(1:3, 2, fill=NA_integer_), c(NA_real_, 1.5, 2.5))
test(9999.076, frollmean(1:3, 2, fill=1:2), error="fill must be a vector of length 1")
test(9999.077, frollmean(1:3, 2, fill=NA), c(NA_real_, 1.5, 2.5))
test(9999.078, frollmean(1:3, 2, fill=TRUE), error="fill must be numeric")
test(9999.079, frollmean(1:3, 2, fill=FALSE), error="fill must be numeric")
test(9999.080, frollmean(1:3, 2, fill="a"), error="fill must be numeric")
test(9999.081, frollmean(1:3, 2, fill=factor("a")), error="fill must be numeric")
test(9999.082, frollmean(1:3, 2, fill=list(NA)), error="fill must be numeric")
## edge cases
#### length(x)==0
test(9999.083, frollmean(numeric(0), 2), numeric(0))
test(9999.084, frollmean(list(1:3, numeric()), 2), list(c(NA_real_, 1.5, 2.5), numeric(0)))
#### length(n)==0
test(9999.085, frollmean(1:3, integer()), error="n must be non 0 length")
test(9999.086, frollmean(list(1:3, 2:4), integer()), error="n must be non 0 length")
#### n==0
test(9999.087, frollmean(1:3, c(2,0)), error="n must be positive integer values")
test(9999.088, frollmean(list(1:3, 2:4), 0), error="n must be positive integer values")
#### n<0
test(9999.089, frollmean(1:3, -2), error="n must be positive integer values")
#### n[[1L]]>0 && n[[2L]]<0
test(9999.090, frollmean(1:3, c(2, -2)), error="n must be positive integer values")
#### n[[1L]]==n[[2L]]
test(9999.091, frollmean(1:3, c(2, 2)), list(c(NA_real_, 1.5, 2.5), c(NA_real_, 1.5, 2.5)))
test(9999.092, frollmean(list(1:3, 4:6), c(2, 2)), list(c(NA_real_, 1.5, 2.5), c(NA_real_, 1.5, 2.5), c(NA_real_, 4.5, 5.5), c(NA_real_, 4.5, 5.5)))
#### n>length(x)
test(9999.093, frollmean(list(1:3, 4:6), 4), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0931, frollmean(list(1:3, 4:6), 4, align="center"), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0932, frollmean(list(1:3, 4:6), 4, align="left"), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0933, frollmean(list(1:3, 4:6), 4, verbose=TRUE), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)), output="frollmean: window width longer than input vector, returning all NA vector")
#### n==length(x)
test(9999.094, frollmean(list(1:3, 4:6), 3), list(c(NA_real_, NA_real_, 2), c(NA_real_, NA_real_, 5)))
#### n<length(x[[1L]]) && n>length(x[[2L]])
test(9999.095, frollmean(list(1:5, 1:2), 3), list(c(NA_real_, NA_real_, 2, 3, 4), c(NA_real_, NA_real_)))
#### n==1
test(9999.096, frollmean(1:4, 1), as.double(1:4))
test(9999.097, frollmean(1:4, 1, algo="exact"), as.double(1:4))
test(9999.098, frollmean(1:4, 1, align="center"), as.double(1:4))
test(9999.099, frollmean(1:4, 1, align="center", algo="exact"), as.double(1:4))
test(9999.100, frollmean(1:4, 1, align="left"), as.double(1:4))
test(9999.101, frollmean(1:4, 1, align="left", algo="exact"), as.double(1:4))
#### length(x)==1 && n==1
test(9999.102, frollmean(5, 1), 5)
test(9999.103, frollmean(list(1, 10, 5), 1), list(1, 10, 5))
test(9999.104, frollmean(5, 1, align="left"), 5)
test(9999.105, frollmean(list(1, 10, 5), 1, align="left"), list(1, 10, 5))
test(9999.106, frollmean(5, 1, align="center"), 5)
test(9999.107, frollmean(list(1, 10, 5), 1, align="center"), list(1, 10, 5))
#### length(x)==1 && n==2
test(9999.108, frollmean(5, 2), NA_real_)
test(9999.109, frollmean(list(1, 10, 5), 2), list(NA_real_, NA_real_, NA_real_))
test(9999.110, frollmean(5, 2, align="left"), NA_real_)
test(9999.111, frollmean(list(1, 10, 5), 2, align="left"), list(NA_real_, NA_real_, NA_real_))
test(9999.112, frollmean(5, 2, align="center"), NA_real_)
test(9999.113, frollmean(list(1, 10, 5), 2, align="center"), list(NA_real_, NA_real_, NA_real_))
#### n==Inf
test(9999.114, frollmean(1:5, Inf), error="n must be positive integer values", warning="NAs introduced by coercion to integer range")
#### n==c(5, Inf)
test(9999.115, frollmean(1:5, c(5, Inf)), error="n must be positive integer values", warning="NAs introduced by coercion to integer range")
#### is.complex(n)
test(9999.116, frollmean(1:5, 3i), error="n must be integer")
#### is.character(n)
test(9999.117, frollmean(1:5, "a"), error="n must be integer")
#### is.factor(n)
test(9999.118, frollmean(1:5, as.factor("a")), error="n must be integer")
#### is.list(n)
test(9999.119, frollmean(1:5, list(1:5)), error="n must be integer, list is accepted for adaptive TRUE")
#### verbose=NA
test(9999.1191, frollmean(1:5, 2, verbose=NA), error="verbose must be TRUE or FALSE")
#### adaptive=NA
test(9999.1192, frollmean(1:5, 2, adaptive=NA), error="adaptive must be TRUE or FALSE")
#### na.rm=NA
test(9999.1193, frollmean(1:5, 2, na.rm=NA), error="na.rm must be TRUE or FALSE")
#### hasNA=1
test(9999.1194, frollmean(1:5, 2, hasNA=1), error="hasNA must be TRUE, FALSE or NA")
#### hasNA=FALSE na.rm=TRUE
test(9999.1195, frollmean(1:5, 2, na.rm=TRUE, hasNA=FALSE), error="using hasNA FALSE and na.rm TRUE does not make sense, if you know there are NA values use hasNA TRUE, otherwise leave it as default NA")
#### exact na.rm=TRUE adaptive=TRUE verbose=TRUE
test(9999.1196, frollmean(c(1:5,NA), 1:6, algo="exact", na.rm=TRUE, adaptive=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"fadaptiverollmeanExact: running for input length 6, hasna 0, narm 1",
"fadaptiverollmeanExact: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
))
#### exact na.rm=TRUE verbose=TRUE
test(9999.1197, frollmean(c(1:5,NA), 2, algo="exact", na.rm=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"frollmeanExact: running for input length 6, window 2, hasna 0, narm 1",
"frollmeanExact: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
))
#### adaptive=TRUE n=character
test(9999.1198, frollmean(1:5, n=letters[1:5], adaptive=TRUE), error="n must be integer vector or list of integer vectors")
#### non-finite values (NA, NaN, Inf, -Inf)
ma = function(x, n, na.rm=FALSE, nf.rm=FALSE) {
if (!is.double(x)) x = as.double(x)
if (!is.integer(n)) n = as.integer(n)
ans = rep(NA_real_, nx<-length(x))
if (nf.rm) x[!is.finite(x)] = NA_real_ # exact=F consistency due to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
for (i in n:nx) ans[i]=mean(x[(i-n+1):i], na.rm=na.rm)
ans
}
n = 4
x = 1:16
x[5] = NaN
test(9999.120, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.121, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[6] = NA
test(9999.122, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.123, identical(frollmean(x, n, algo="exact"), ma(x, n)))
#### test inconsistency of NaN-NA order is consistent to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
x[5] = NA
x[6] = NaN
test(9999.124, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.125, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[5] = Inf
test(9999.126, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.127, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[6] = -Inf
test(9999.128, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.129, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[5:7] = c(NA, Inf, -Inf)
test(9999.130, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.131, identical(frollmean(x, n, algo="exact"), ma(x, n)))
#### adaptive window
ama = function(x, n, na.rm=FALSE, fill=NA, nf.rm=FALSE) {
# adaptive moving average in R
stopifnot((nx<-length(x))==length(n))
if (nf.rm) x[!is.finite(x)] = NA_real_
ans = rep(NA_real_, nx)
for (i in seq_along(x)) {
ans[i] = if (i >= n[i])
mean(x[(i-n[i]+1):i], na.rm=na.rm)
else as.double(fill)
}
ans
}
x = rnorm(1e3)
n = rep(20L, 1e3) # pseudo adaptive
test(9999.132, frollmean(x, n[1L]), frollmean(x, n, adaptive=TRUE)) # n auto wrapped in list
test(9999.133, frollmean(x, n[1L]), frollmean(x, list(n), adaptive=TRUE))
test(9999.134, frollmean(x, n[1L]), frollmean(x, n, algo="exact", adaptive=TRUE))
x = c(1:4,2:5,4:6,5L)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, list(n), adaptive=TRUE)
ans3 = frollmean(x, list(n), algo="exact", adaptive=TRUE)
test(9999.135, ans1, ans2)
test(9999.136, ans1, ans3)
x = data.table(x=x, y=x/2) # multiple columns and multiple windows
ln = list(n, n+1L)
ans1 = list(ama(x[[1L]], ln[[1L]]), ama(x[[1L]], ln[[2L]]), ama(x[[2L]], ln[[1L]]), ama(x[[2L]], ln[[2L]]))
ans2 = frollmean(x, ln, adaptive=TRUE)
ans3 = frollmean(x, ln, algo="exact", adaptive=TRUE)
test(9999.137, ans1, ans2)
test(9999.138, ans1, ans3)
#### adaptive fill
x = c(1:4,2:5,4:6,5L)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n, fill=150)
ans2 = frollmean(x, n, adaptive=TRUE, fill=150)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact", fill=150)
test(9999.139, ans1, ans2)
test(9999.140, ans1, ans3)
#### adaptive na.rm
x = c(1:4,NA,2:5,NA,4:6,NA,5L)
n = c(2L, 2L, 2L, 5L, 3L, 4L, 5L, 1L, 2L, 1L, 2L, 4L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, algo="exact", adaptive=TRUE)
test(9999.141, ans1, ans2)
test(9999.142, ans1, ans3)
ans1 = ama(x, n, na.rm=TRUE)
ans2 = frollmean(x, n, na.rm=TRUE, adaptive=TRUE)
ans3 = frollmean(x, n, na.rm=TRUE, algo="exact", adaptive=TRUE)
test(9999.143, ans1, ans2)
test(9999.144, ans1, ans3)
#### interactive test 3e9 vector where 2.5e9 are NAs to confirm uint_fast64_t running NA counter
if (FALSE) {
x = c(rep(1, 3e8), rep(NA_real_, 2.5e9), rep(1, 2e8))
n1 = 1e3; n2 = 1e4
n = c(rep(n1, 1.5e9), rep(n2, 1.5e9))
stopifnot(length(x)==3e9, length(n)==3e9)
ans = frollmean(x, list(n), adaptive=TRUE)
stopifnot(
all.equal(ans[1:(n1+1)], c(rep(NA_real_, n1-1), 1, 1)),
all.equal(ans[3e8+(-1:1)], c(1, 1, NA)),
all.equal(ans[2.8e9+n2+(-1:1)], c(NA_real_, 1, 1)),
all.equal(ans[(3e9-n2):3e9], rep(1, n2+1))
)
}
#### adaptive limitations
test(9999.145, frollmean(1:2, 1:2, adaptive=TRUE, align="right"), c(1, 1.5))
test(9999.146, frollmean(1:2, 1:2, adaptive=TRUE, align="center"), error="using adaptive TRUE and align argument different than 'right' is not implemented")
test(9999.147, frollmean(1:2, 1:2, adaptive=TRUE, align="left"), error="using adaptive TRUE and align argument different than 'right' is not implemented")
test(9999.148, frollmean(list(1:2, 1:3), list(1:2), adaptive=TRUE), error="adaptive rolling function can only process 'x' having equal length of elements, like data.table or data.frame. If you want to call rolling function on list having variable length of elements call it for each field separately")
#### adaptive exact
fastama = function(x, n, na.rm, fill=NA) {
if (!missing(na.rm)) stop("fast adaptive moving average implemented in R does not handle NAs, input having NAs will result in incorrect answer so not even try to compare to it")
# fast implementation of adaptive moving average in R, in case of NAs incorrect answer
stopifnot((nx<-length(x))==length(n))
cs = cumsum(x)
ans = rep(NA_real_, nx)
for (i in seq_along(cs)) {
ans[i] = if (i == n[i])
cs[i]/n[i]
else if (i > n[i])
(cs[i]-cs[i-n[i]])/n[i]
else as.double(fill)
}
ans
}
x = c(1:3, 1e9L, 2:5, 5e9, 4:6)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
test(9999.149, ans1, ans2)
test(9999.150, ans1, ans3)
test(9999.151, ans1, ans4)
x = sample(c(rnorm(1e3, 1e2), rnorm(1e1, 1e9, 1e2), abs(rnorm(1e1, 1e-9, 1e-2))))
n = sample(1:20, length(x), TRUE)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
anserr = list(
froll_exact_f = ans1-ans2,
froll_exact_t = ans1-ans3,
fastama = ans1-ans4
)
errs = lapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.152, errs[["froll_exact_t"]] < errs[["froll_exact_f"]])
test(9999.153, errs[["froll_exact_t"]] < errs[["fastama"]])
x = sample(c(1:100, 5e9, 5e-9))
n = sample(1:10, length(x), TRUE)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
anserr = list(
froll_exact_f = ans1-ans2,
froll_exact_t = ans1-ans3,
fastama = ans1-ans4
)
errs = lapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.154, errs[["froll_exact_t"]] < errs[["froll_exact_f"]])
test(9999.155, errs[["froll_exact_t"]] < errs[["fastama"]])
## edge cases adaptive
#### is.integer(n)
test(9999.156, frollmean(1:5, 1:5, adaptive=TRUE), seq(1,3,0.5))
#### is.integer(n) && length(n)!=length(x)
test(9999.157, frollmean(1:10, 1:5, adaptive=TRUE), error="length of integer vector(s) provided as list to 'n' argument must be equal to number of observations provided in 'x'")
#### is.list(n) && length(n[[1L]])!=length(x)
test(9999.158, frollmean(1:10, list(1:5), adaptive=TRUE), error="length of integer vector(s) provided as list to 'n' argument must be equal to number of observations provided in 'x'")
#### non-finite values (NA, NaN, Inf, -Inf)
n = c(4,1,4,5,5,4,6,5,4,4,2,3,4,3,2,4)
x = 1:16
x[5] = NaN
test(9999.159, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.160, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[6] = NA
test(9999.161, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.162, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
#### test inconsistency of NaN-NA order is consistent to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
x[5] = NA
x[6] = NaN
test(9999.163, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.164, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[5] = Inf
test(9999.165, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.166, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[6] = -Inf
test(9999.167, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.168, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[5:7] = c(NA, Inf, -Inf)
test(9999.169, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.170, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
## test verbose messages
x = 1:10
n = 3
test(9999.171, frollmean(x, n, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.172, frollmean(list(x, x+1), n, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 2x1",
"frollfunR: 2 column(s) and 1 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.173, frollmean(x, c(n, n+1), verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x2",
"frollfunR: 1 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanFast: running for input length 10, window 4, hasna 0, narm 0"))
test(9999.174, frollmean(list(x, x+1), c(n, n+1), verbose=TRUE), output=c(
"frollfunR: allocating memory for results 2x2",
"frollfunR: 2 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanFast: running for input length 10, window 4, hasna 0, narm 0"))
test(9999.175, frollmean(x, n, algo="exact", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"frollmeanExact: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.176, frollmean(x, n, align="center", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmean: align 0, shift answer by -1"))
test(9999.177, frollmean(x, n, align="left", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmean: align -1, shift answer by -2"))
nn = c(1:4,2:3,1:4)
test(9999.178, frollmean(x, nn, adaptive=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"fadaptiverollmeanFast: running for input length 10, hasna 0, narm 0"))
test(9999.179, frollmean(x, nn, algo="exact", adaptive=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"fadaptiverollmeanExact: running for input length 10, hasna 0, narm 0"))
x[8] = NA
test(9999.180, frollmean(x, n, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"))
test(9999.181, frollmean(x, n, algo="exact", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanExact: NA (or other non-finite) value(s) are present in input, na.rm was FALSE so in 'exact' implementation NAs were handled already, no need to re-run"))
test(9999.182, frollmean(x, nn, adaptive=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
"fadaptiverollmeanFast: running for input length 10, hasna 0, narm 0",
"fadaptiverollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"))
test(9999.183, frollmean(x, nn, algo="exact", adaptive=TRUE, verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"fadaptiverollmeanExact: running for input length 10, hasna 0, narm 0",
"fadaptiverollmeanExact: NA (or other non-finite) value(s) are present in input, na.rm was FALSE so in 'exact' implementation NAs were handled already, no need to re-run"))
d = as.data.table(list(1:10/2, 10:1/4))
test(9999.184, frollmean(d[,1], 3, algo="exact", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 1x1",
"frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
"frollmeanExact: running for input length 10, window 3, hasna 0, narm 0"
))
test(9999.185, frollmean(d, 3:4, algo="exact", verbose=TRUE), output=c(
"frollfunR: allocating memory for results 2x2",
"frollfunR: 2 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe, 'exact' version of rolling function will compute results in parallel anyway as it does not print with verbose",
"frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanExact: running for input length 10, window 4, hasna 0, narm 0",
"frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
"frollmeanExact: running for input length 10, window 4, hasna 0, narm 0"
))
## test warnings
test(9999.186, frollmean(c(1:2,NA,4:10), 4, hasNA=FALSE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.187, frollmean(c(1:2,NA,4:10), 2, hasNA=FALSE), c(NA, 1.5, NA, NA, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
## validation
set.seed(108)
makeNA = function(x, ratio=0.1) {id=sample(length(x), as.integer(length(x) * ratio)); x[id]=NA; x}
num = 9999.5000 # book 4000 tests for zoo
#### against zoo
if (requireNamespace("zoo", quietly=TRUE)) {
drollapply = function(...) as.double(zoo::rollapply(...)) # rollapply is not consistent in data type of answer, force to double
zoo_compare = function(x, n) {
num.step = 0.0001
#### fun, align, na.rm, fill, exact
for (fun in c("mean")) { # ,"sum"
for (align in c("right","center","left")) {
for (na.rm in c(FALSE, TRUE)) {
for (fill in c(NA_real_, 0)) {
for (algo in c("fast", "exact")) {
num <<- num + num.step
eval(substitute( # so we can have values displayed in output/log rather than variables
test(.num,
froll(.fun, x, n, align=.align, fill=.fill, na.rm=.na.rm, algo=.algo),
drollapply(x, n, FUN=.fun, fill=.fill, align=.align, na.rm=.na.rm)),
list(.num=num, .fun=fun, .align=align, .fill=fill, .na.rm=na.rm, .algo=algo)
))
}
}
}
}
}
}
## no NA
x = rnorm(1e3); n = 50 # x even, n even
zoo_compare(x, n)
x = rnorm(1e3+1); n = 50 # x odd, n even
zoo_compare(x, n)
x = rnorm(1e3); n = 51 # x even, n odd
zoo_compare(x, n)
x = rnorm(1e3+1); n = 51 # x odd, n odd
zoo_compare(x, n)
## leading and trailing NAs
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = 50
zoo_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = 50
zoo_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = 51
zoo_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = 51
zoo_compare(x, n)
## random NA
x = makeNA(rnorm(1e3)); n = 50
zoo_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = 50
zoo_compare(x, n)
x = makeNA(rnorm(1e3)); n = 51
zoo_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = 51
zoo_compare(x, n)
}
#### adaptive moving average compare
num = 9999.9000 # 1000 tests should be more than enough
afun = function(fun, x, n, na.rm=FALSE, fill=NA, nf.rm=FALSE) {
# adaptive moving average in R
stopifnot((nx<-length(x))==length(n))
ans = rep(NA_real_, nx)
if (nf.rm) x[!is.finite(x)] = NA_real_
FUN = match.fun(fun)
for (i in seq_along(x)) {
ans[i] = if (i >= n[i])
FUN(x[(i-n[i]+1):i], na.rm=na.rm)
else as.double(fill)
}
ans
}
afun_compare = function(x, n) {
num.step = 0.0001
#### fun, na.rm, fill, exact
for (fun in c("mean")) { # ,"sum"
for (na.rm in c(FALSE, TRUE)) {
for (fill in c(NA_real_, 0)) {
for (algo in c("fast", "exact")) {
num <<- num + num.step
eval(substitute(
test(.num,
froll(.fun, x, n, fill=.fill, na.rm=.na.rm, algo=.algo, adaptive=TRUE),
afun(.fun, x, n, fill=.fill, na.rm=.na.rm, nf.rm=.nf.rm)),
list(.num=num, .fun=fun, .fill=fill, .na.rm=na.rm, .algo=algo, .nf.rm=algo!="exact")
))
}
}
}
}
}
#### no NA
x = rnorm(1e3); n = sample(50, length(x), TRUE) # x even, n even
afun_compare(x, n)
x = rnorm(1e3+1); n = sample(50, length(x), TRUE) # x odd, n even
afun_compare(x, n)
x = rnorm(1e3); n = sample(51, length(x), TRUE) # x even, n odd
afun_compare(x, n)
x = rnorm(1e3+1); n = sample(51, length(x), TRUE) # x odd, n odd
afun_compare(x, n)
#### leading and trailing NAs
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
#### random NA
x = makeNA(rnorm(1e3)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
rm(num)
setDTthreads(oldDTthreads)
cat("froll unit tests successfully passed\n")
|