File: froll.R

package info (click to toggle)
r-cran-data.table 1.12.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 13,084 kB
  • sloc: ansic: 12,667; sh: 13; makefile: 6
file content (830 lines) | stat: -rw-r--r-- 39,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
## this file will be migrated to inst/tests/tests.Rraw when branch will be ready to merge
cc.used = all(sapply(c("test","froll"), exists))
if (!interactive() && !cc.used) {
  library(data.table)
  test = data.table:::test
  froll = data.table:::froll
}
oldDTthreads = setDTthreads(1) # mimics CRAN check, tested also on 4 cores

## rolling features

#### atomic vectors input and single window returns atomic vectors
x = 1:6/2
ans1 = frollmean(x, 3)
ans2 = frollmean(x, 3, algo="exact")
expected = c(rep(NA_real_,2), seq(1,2.5,0.5))
test(9999.001, ans1, expected)
test(9999.002, ans2, expected)

#### multiple columns at once
d = as.data.table(list(1:6/2, 3:8/4))
ans1 = frollmean(d, 3)
ans2 = frollmean(d, 3, algo="exact")
expected = list(
  c(rep(NA_real_,2), seq(1,2.5,0.5)),
  c(rep(NA_real_,2), seq(1,1.75,0.25))
)
test(9999.003, ans1, expected)
test(9999.004, ans2, expected)

#### multiple windows at once
ans1 = frollmean(d[, .(V1)], c(3, 4))
ans2 = frollmean(d[, .(V1)], c(3, 4), algo="exact")
expected = list(
  c(rep(NA_real_,2), seq(1,2.5,0.5)),
  c(rep(NA_real_,3), seq(1.25,2.25,0.5))
)
test(9999.005, ans1, expected)
test(9999.006, ans2, expected)

#### multiple columns and multiple windows at once
ans1 = frollmean(d, c(3, 4))
ans2 = frollmean(d, c(3, 4), algo="exact")
expected = list(
  c(rep(NA_real_,2), seq(1,2.5,0.5)), c(rep(NA_real_,3), seq(1.25,2.25,0.5)),
  c(rep(NA_real_,2), seq(1,1.75,0.25)), c(rep(NA_real_,3), seq(1.125,1.625,0.25))
)
test(9999.007, ans1, expected)
test(9999.008, ans2, expected)

#### in x integer converted to double
di = data.table(real=1:10/2, int=1:10)
ans = frollmean(di, 3)
expected = list(
  c(rep(NA_real_,2), seq(1,4.5,0.5)),
  c(rep(NA_real_,2), seq(2,9,1))
)
test(9999.009, ans, expected)

#### in n double converted to integer
x = 1:3/2
n = 2
test(9999.010, frollmean(x, n), c(NA, 0.75, 1.25))
n = list(c(2L,1L,2L), c(2,1,2))
test(9999.011, frollmean(x, n, adaptive=TRUE), list(c(NA, 1, 1.25), c(NA, 1, 1.25)))

#### error on unsupported type
dx = data.table(real=1:10/2, char=letters[1:10])
test(9999.012, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, fact=factor(letters[1:10]))
test(9999.013, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, logi=logical(10))
test(9999.014, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
dx = data.table(real=1:10/2, list=rep(list(NA), 10))
test(9999.015, frollmean(dx, 3), error="x must be list, data.frame or data.table of numeric types")
x = letters[1:10]
test(9999.016, frollmean(x, 3), error="x must be of type numeric")
x = 1:10/2
test(9999.017, frollmean(x, "a"), error="n must be integer")
test(9999.018, frollmean(x, factor("a")), error="n must be integer")
test(9999.019, frollmean(x, TRUE), error="n must be integer")
test(9999.020, frollmean(x, list(1:10)), error="n must be integer, list is accepted for adaptive TRUE")
test(9999.021, frollmean(x, list(NA), adaptive=TRUE), error="n must be integer vector or list of integer vectors")
test(9999.022, frollmean(x, list(c(1:5,1:5), NA), adaptive=TRUE), error="n must be integer vector or list of integer vectors")

#### various length list vectors
l = list(1:6/2, 3:10/4)
ans = frollmean(l, c(3, 4))
expected = list(
  c(rep(NA_real_,2), seq(1,2.5,0.5)), c(rep(NA_real_,3), seq(1.25,2.25,0.5)),
  c(rep(NA_real_,2), seq(1,2.25,0.25)), c(rep(NA_real_,3), seq(1.125,2.125,0.25))
)
test(9999.023, ans, expected)

#### exact
set.seed(108)
x = sample(c(rnorm(1e3, 1e6, 5e5), 5e9, 5e-9))
n = 15
ma = function(x, n, na.rm=FALSE) {
  ans = rep(NA_real_, nx<-length(x))
  for (i in n:nx) ans[i] = mean(x[(i-n+1):i], na.rm=na.rm)
  ans
}
fastma = function(x, n, na.rm) {
  if (!missing(na.rm)) stop("NAs are unsupported, wrongly propagated by cumsum")
  cs = cumsum(x)
  scs = shift(cs, n)
  scs[n] = 0
  as.double((cs-scs)/n)
}
ans1 = ma(x, n)
ans2 = fastma(x, n)
ans3 = frollmean(x, n, algo="exact")
ans4 = frollmean(x, n)
anserr = list(
  froll_exact_f = ans4-ans1,
  froll_exact_t = ans3-ans1,
  fastma = ans2-ans1
)
errs = sapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.024, errs[["froll_exact_t"]]==0)
test(9999.025, errs[["froll_exact_f"]]>errs[["froll_exact_t"]])
test(9999.026, errs[["fastma"]]>errs[["froll_exact_t"]])
test(9999.027, errs[["fastma"]]>errs[["froll_exact_f"]])

#### align: right/center/left
d = as.data.table(list(1:8/2, 3:10/4))
ans1 = frollmean(d, 5, align="right") # default
ans2 = frollmean(d, 5, align="right", algo="exact")
expected = list(
  c(rep(NA_real_,4), seq(1.5,3,0.5)),
  c(rep(NA_real_,4), seq(1.25,2,0.25))
)
test(9999.028, ans1, expected)
test(9999.029, ans2, expected)
ans1 = frollmean(d, 5, align="center") # x even, n odd
ans2 = frollmean(d, 5, align="center", algo="exact")
expected = list(
  c(rep(NA_real_, 2), seq(1.5,3,0.5), rep(NA_real_, 2)),
  c(rep(NA_real_, 2), seq(1.25,2,0.25), rep(NA_real_, 2))
)
test(9999.030, ans1, expected)
test(9999.031, ans2, expected)
ans1 = frollmean(d, 6, align="center") # x even, n even
ans2 = frollmean(d, 6, align="center", algo="exact")
expected = list(
  c(rep(NA_real_, 2), seq(1.75,2.75,0.5), rep(NA_real_,3)),
  c(rep(NA_real_, 2), seq(1.375,1.875,0.25), rep(NA_real_,3))
)
test(9999.032, ans1, expected)
test(9999.033, ans2, expected)
de = rbind(d, data.table(4.5, 2.75))
ans1 = frollmean(de, 5, align="center") # x odd, n odd
ans2 = frollmean(de, 5, align="center", algo="exact")
expected = list(
  c(rep(NA_real_, 2), seq(1.5,3.5,0.5), rep(NA_real_, 2)),
  c(rep(NA_real_, 2), seq(1.25,2.25,0.25), rep(NA_real_, 2))
)
test(9999.034, ans1, expected)
test(9999.035, ans2, expected)
ans1 = frollmean(de, 6, align="center") # x odd, n even
ans2 = frollmean(de, 6, align="center", algo="exact")
expected = list(
  c(rep(NA_real_, 2), seq(1.75,3.25,0.5), rep(NA_real_,3)),
  c(rep(NA_real_, 2), seq(1.375,2.125,0.25), rep(NA_real_,3))
)
test(9999.036, ans1, expected)
test(9999.037, ans2, expected)
ans1 = frollmean(d, 5, align="left")
ans2 = frollmean(d, 5, align="left", algo="exact")
expected = list(
  c(seq(1.5,3,0.5), rep(NA_real_,4)),
  c(seq(1.25,2,0.25), rep(NA_real_,4))
)
test(9999.038, ans1, expected)
test(9999.039, ans2, expected)

#### handling NAs align na.rm
d = as.data.table(list(1:8/2, 3:10/4))
d[c(2L, 7L), "V1" := NA][c(1:2,8L), "V2" := NA]
ans1 = frollmean(d, 3, align="right") # default
ans2 = frollmean(d, 3, align="right", algo="exact")
expected = list(
  c(rep(NA_real_,4), seq(2,2.5,0.5), rep(NA_real_, 2)),
  c(rep(NA_real_,4), seq(1.5,2,0.25), rep(NA_real_, 1))
)
test(9999.040, ans1, expected)
test(9999.041, ans2, expected)
ans1 = frollmean(d, 3, align="right", na.rm=TRUE)
ans2 = frollmean(d, 3, align="right", algo="exact", na.rm=TRUE)
expected = list(
  c(rep(NA_real_,2), 1, 1.75, 2, 2.5, 2.75, 3.5),
  c(rep(NA_real_,2), 1.25, 1.375, 1.5, 1.75, 2, 2.125)
)
test(9999.042, ans1, expected)
test(9999.043, ans2, expected)
ans1 = frollmean(d, 3, align="center") # x even, n odd
ans2 = frollmean(d, 3, align="center", algo="exact")
expected = list(
  c(rep(NA_real_,3), seq(2,2.5,0.5), rep(NA_real_, 3)),
  c(rep(NA_real_,3), seq(1.5,2,0.25), rep(NA_real_, 2))
)
test(9999.044, ans1, expected)
test(9999.045, ans2, expected)
ans1 = frollmean(d, 3, align="center", na.rm=TRUE) # x even, n odd
ans2 = frollmean(d, 3, align="center", algo="exact", na.rm=TRUE)
expected = list(
  c(rep(NA_real_,1), 1, 1.75, 2, 2.5, 2.75, 3.5, rep(NA_real_,1)),
  c(rep(NA_real_,1), 1.25, 1.375, 1.5, 1.75, 2, 2.125, rep(NA_real_,1))
)
test(9999.046, ans1, expected)
test(9999.047, ans2, expected)
ans1 = frollmean(d, 4, align="center") # x even, n even
ans2 = frollmean(d, 4, align="center", algo="exact")
expected = list(
  c(rep(NA_real_,3), 2.25, rep(NA_real_, 4)),
  c(rep(NA_real_,3), 1.625, 1.875, rep(NA_real_, 3))
)
test(9999.048, ans1, expected)
test(9999.049, ans2, expected)
ans1 = frollmean(d, 4, align="center", na.rm=TRUE) # x even, n even
ans2 = frollmean(d, 4, align="center", algo="exact", na.rm=TRUE)
expected = list(
  c(rep(NA_real_,1), 4/3, 2, 2.25, 2.5, 9.5/3, rep(NA_real_,2)),
  c(rep(NA_real_,1), 1.375, 1.5, 1.625, 1.875, 2, rep(NA_real_,2))
)
test(9999.050, ans1, expected)
test(9999.051, ans2, expected)
de = rbind(d, data.table(4.5, 2.75))
ans1 = frollmean(de, 3, align="center") # x odd, n odd
ans2 = frollmean(de, 3, align="center", algo="exact")
expected = list(
  c(rep(NA_real_,3), 2, 2.5, rep(NA_real_, 4)),
  c(rep(NA_real_,3), 1.5, 1.75, 2, rep(NA_real_, 3))
)
test(9999.052, ans1, expected)
test(9999.053, ans2, expected)
ans1 = frollmean(de, 3, align="center", na.rm=TRUE) # x odd, n odd
ans2 = frollmean(de, 3, align="center", algo="exact", na.rm=TRUE)
expected = list(
  c(rep(NA_real_,1), 1, 1.75, 2, 2.5, 2.75, 3.5, 4.25, rep(NA_real_,1)),
  c(rep(NA_real_,1), 1.25, 1.375, 1.5, 1.75, 2, 2.125, 2.5, rep(NA_real_,1))
)
test(9999.054, ans1, expected)
test(9999.055, ans2, expected)
ans1 = frollmean(de, 4, align="center") # x odd, n even
ans2 = frollmean(de, 4, align="center", algo="exact")
expected = list(
  c(rep(NA_real_, 3), 2.25, rep(NA_real_,5)),
  c(rep(NA_real_, 3), 1.625, 1.875, rep(NA_real_,4))
)
test(9999.056, ans1, expected)
test(9999.057, ans2, expected)
ans1 = frollmean(de, 4, align="center", na.rm=TRUE) # x odd, n even
ans2 = frollmean(de, 4, align="center", algo="exact", na.rm=TRUE)
expected = list(
  c(rep(NA_real_, 1), 4/3, 2, 2.25, 2.5, 9.5/3, 11.5/3, rep(NA_real_,2)),
  c(rep(NA_real_, 1), 1.375, 1.5, 1.625, 1.875, 2, 7/3, rep(NA_real_,2))
)
test(9999.058, ans1, expected)
test(9999.059, ans2, expected)
ans1 = frollmean(d, 3, align="left")
ans2 = frollmean(d, 3, align="left", algo="exact")
expected = list(
  c(rep(NA_real_, 2), 2, 2.5, rep(NA_real_,4)),
  c(rep(NA_real_, 2), 1.5, 1.75, 2, rep(NA_real_,3))
)
test(9999.060, ans1, expected)
test(9999.061, ans2, expected)
ans1 = frollmean(d, 3, align="left", na.rm=TRUE)
ans2 = frollmean(d, 3, align="left", algo="exact", na.rm=TRUE)
expected = list(
  c(1, 1.75, 2, 2.5, 2.75, 3.5, rep(NA_real_,2)),
  c(1.25, 1.375, 1.5, 1.75, 2, 2.125, rep(NA_real_,2))
)
test(9999.062, ans1, expected)
test(9999.063, ans2, expected)
#### handling NAs for NaN output also
d = as.data.table(list(1:6/2, 3:8/4))
d[c(2L, 5L), V1:=NA][4:6, V2:=NA]
ans1 = frollmean(d, 2:3)
ans2 = frollmean(d, 2:3, algo="exact")
expected = list(c(NA, NA, NA, 1.75, NA, NA), rep(NA_real_, 6), c(NA, 0.875, 1.125, NA, NA, NA), c(NA, NA, 1, NA, NA, NA))
test(9999.064, ans1, expected)
test(9999.065, ans2, expected)
ans1 = frollmean(d, 2:3, na.rm=TRUE)
ans2 = frollmean(d, 2:3, algo="exact", na.rm=TRUE)
expected = list(c(NA, 0.5, 1.5, 1.75, 2, 3), c(NA, NA, 1, 1.75, 1.75, 2.5), c(NA, 0.875, 1.125, 1.25, NaN, NaN), c(NA, NA, 1, 1.125, 1.25, NaN))
test(9999.066, ans1, expected)
test(9999.067, ans2, expected)
#### early stopping NAs in leading k obs
test(9999.0671, frollmean(c(1:2,NA,4:10), 4, verbose=TRUE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 4, hasna 0, narm 0",
  "frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs"
))
test(9999.0672, frollmean(c(1:2,NA,4:10), 4, hasNA=FALSE, verbose=TRUE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 4, hasna -1, narm 0",
  "frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs"
), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.0673, ans<-frollmean(c(1:2,NA,4:10), 2, hasNA=FALSE, verbose=TRUE), c(NA, 1.5, NA, NA, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 2, hasna -1, narm 0",
  "frollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.0674, frollmean(c(1:2,NA,4:10), 4, verbose=TRUE, align="center"), c(rep(NA_real_, 4), 5.5, 6.5, 7.5, 8.5, NA, NA), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 4, hasna 0, narm 0",
  "frollmeanFast: NA (or other non-finite) value(s) are present in input, skip non-NA attempt and run with extra care for NAs",
  "frollmean: align 0, shift answer by -2"
))

#### fill constant
test(9999.068, frollmean(1:5, 4, fill=0), c(0, 0, 0, 2.5, 3.5))
test(9999.069, frollmean(1:5, 4, fill=-5), c(-5, -5, -5, 2.5, 3.5))
test(9999.070, frollmean(1:5, 4, fill=100), c(100, 100, 100, 2.5, 3.5))
test(9999.071, frollmean(1:5, 4, fill=Inf), c(Inf, Inf, Inf, 2.5, 3.5))
test(9999.072, frollmean(1:5, 4, fill=NaN), c(NaN, NaN, NaN, 2.5, 3.5))

#### fill coercion
test(9999.073, frollmean(1:3, 2, fill=0), c(0, 1.5, 2.5))
test(9999.074, frollmean(1:3, 2, fill=0L), c(0, 1.5, 2.5))
test(9999.075, frollmean(1:3, 2, fill=NA_integer_), c(NA_real_, 1.5, 2.5))
test(9999.076, frollmean(1:3, 2, fill=1:2), error="fill must be a vector of length 1")
test(9999.077, frollmean(1:3, 2, fill=NA), c(NA_real_, 1.5, 2.5))
test(9999.078, frollmean(1:3, 2, fill=TRUE), error="fill must be numeric")
test(9999.079, frollmean(1:3, 2, fill=FALSE), error="fill must be numeric")
test(9999.080, frollmean(1:3, 2, fill="a"), error="fill must be numeric")
test(9999.081, frollmean(1:3, 2, fill=factor("a")), error="fill must be numeric")
test(9999.082, frollmean(1:3, 2, fill=list(NA)), error="fill must be numeric")

## edge cases
#### length(x)==0
test(9999.083, frollmean(numeric(0), 2), numeric(0))
test(9999.084, frollmean(list(1:3, numeric()), 2), list(c(NA_real_, 1.5, 2.5), numeric(0)))
#### length(n)==0
test(9999.085, frollmean(1:3, integer()), error="n must be non 0 length")
test(9999.086, frollmean(list(1:3, 2:4), integer()), error="n must be non 0 length")
#### n==0
test(9999.087, frollmean(1:3, c(2,0)), error="n must be positive integer values")
test(9999.088, frollmean(list(1:3, 2:4), 0), error="n must be positive integer values")
#### n<0
test(9999.089, frollmean(1:3, -2), error="n must be positive integer values")
#### n[[1L]]>0 && n[[2L]]<0
test(9999.090, frollmean(1:3, c(2, -2)), error="n must be positive integer values")
#### n[[1L]]==n[[2L]]
test(9999.091, frollmean(1:3, c(2, 2)), list(c(NA_real_, 1.5, 2.5), c(NA_real_, 1.5, 2.5)))
test(9999.092, frollmean(list(1:3, 4:6), c(2, 2)), list(c(NA_real_, 1.5, 2.5), c(NA_real_, 1.5, 2.5), c(NA_real_, 4.5, 5.5), c(NA_real_, 4.5, 5.5)))
#### n>length(x)
test(9999.093, frollmean(list(1:3, 4:6), 4), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0931, frollmean(list(1:3, 4:6), 4, align="center"), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0932, frollmean(list(1:3, 4:6), 4, align="left"), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)))
test(9999.0933, frollmean(list(1:3, 4:6), 4, verbose=TRUE), list(c(NA_real_, NA_real_, NA_real_), c(NA_real_, NA_real_, NA_real_)), output="frollmean: window width longer than input vector, returning all NA vector")
#### n==length(x)
test(9999.094, frollmean(list(1:3, 4:6), 3), list(c(NA_real_, NA_real_, 2), c(NA_real_, NA_real_, 5)))
#### n<length(x[[1L]]) && n>length(x[[2L]])
test(9999.095, frollmean(list(1:5, 1:2), 3), list(c(NA_real_, NA_real_, 2, 3, 4), c(NA_real_, NA_real_)))
#### n==1
test(9999.096, frollmean(1:4, 1), as.double(1:4))
test(9999.097, frollmean(1:4, 1, algo="exact"), as.double(1:4))
test(9999.098, frollmean(1:4, 1, align="center"), as.double(1:4))
test(9999.099, frollmean(1:4, 1, align="center", algo="exact"), as.double(1:4))
test(9999.100, frollmean(1:4, 1, align="left"), as.double(1:4))
test(9999.101, frollmean(1:4, 1, align="left", algo="exact"), as.double(1:4))
#### length(x)==1 && n==1
test(9999.102, frollmean(5, 1), 5)
test(9999.103, frollmean(list(1, 10, 5), 1), list(1, 10, 5))
test(9999.104, frollmean(5, 1, align="left"), 5)
test(9999.105, frollmean(list(1, 10, 5), 1, align="left"), list(1, 10, 5))
test(9999.106, frollmean(5, 1, align="center"), 5)
test(9999.107, frollmean(list(1, 10, 5), 1, align="center"), list(1, 10, 5))
#### length(x)==1 && n==2
test(9999.108, frollmean(5, 2), NA_real_)
test(9999.109, frollmean(list(1, 10, 5), 2), list(NA_real_, NA_real_, NA_real_))
test(9999.110, frollmean(5, 2, align="left"), NA_real_)
test(9999.111, frollmean(list(1, 10, 5), 2, align="left"), list(NA_real_, NA_real_, NA_real_))
test(9999.112, frollmean(5, 2, align="center"), NA_real_)
test(9999.113, frollmean(list(1, 10, 5), 2, align="center"), list(NA_real_, NA_real_, NA_real_))
#### n==Inf
test(9999.114, frollmean(1:5, Inf), error="n must be positive integer values", warning="NAs introduced by coercion to integer range")
#### n==c(5, Inf)
test(9999.115, frollmean(1:5, c(5, Inf)), error="n must be positive integer values", warning="NAs introduced by coercion to integer range")
#### is.complex(n)
test(9999.116, frollmean(1:5, 3i), error="n must be integer")
#### is.character(n)
test(9999.117, frollmean(1:5, "a"), error="n must be integer")
#### is.factor(n)
test(9999.118, frollmean(1:5, as.factor("a")), error="n must be integer")
#### is.list(n)
test(9999.119, frollmean(1:5, list(1:5)), error="n must be integer, list is accepted for adaptive TRUE")
#### verbose=NA
test(9999.1191, frollmean(1:5, 2, verbose=NA), error="verbose must be TRUE or FALSE")
#### adaptive=NA
test(9999.1192, frollmean(1:5, 2, adaptive=NA), error="adaptive must be TRUE or FALSE")
#### na.rm=NA
test(9999.1193, frollmean(1:5, 2, na.rm=NA), error="na.rm must be TRUE or FALSE")
#### hasNA=1
test(9999.1194, frollmean(1:5, 2, hasNA=1), error="hasNA must be TRUE, FALSE or NA")
#### hasNA=FALSE na.rm=TRUE
test(9999.1195, frollmean(1:5, 2, na.rm=TRUE, hasNA=FALSE), error="using hasNA FALSE and na.rm TRUE does not make sense, if you know there are NA values use hasNA TRUE, otherwise leave it as default NA")
#### exact na.rm=TRUE adaptive=TRUE verbose=TRUE
test(9999.1196, frollmean(c(1:5,NA), 1:6, algo="exact", na.rm=TRUE, adaptive=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel", 
  "fadaptiverollmeanExact: running for input length 6, hasna 0, narm 1", 
  "fadaptiverollmeanExact: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
))
#### exact na.rm=TRUE verbose=TRUE
test(9999.1197, frollmean(c(1:5,NA), 2, algo="exact", na.rm=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel", 
  "frollmeanExact: running for input length 6, window 2, hasna 0, narm 1", 
  "frollmeanExact: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"
))
#### adaptive=TRUE n=character
test(9999.1198, frollmean(1:5, n=letters[1:5], adaptive=TRUE), error="n must be integer vector or list of integer vectors")

#### non-finite values (NA, NaN, Inf, -Inf)
ma = function(x, n, na.rm=FALSE, nf.rm=FALSE) {
  if (!is.double(x)) x = as.double(x)
  if (!is.integer(n)) n = as.integer(n)
  ans = rep(NA_real_, nx<-length(x))
  if (nf.rm) x[!is.finite(x)] = NA_real_ # exact=F consistency due to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
  for (i in n:nx) ans[i]=mean(x[(i-n+1):i], na.rm=na.rm)
  ans
}
n = 4
x = 1:16
x[5] = NaN
test(9999.120, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.121, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[6] = NA
test(9999.122, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.123, identical(frollmean(x, n, algo="exact"), ma(x, n)))
#### test inconsistency of NaN-NA order is consistent to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
x[5] = NA
x[6] = NaN
test(9999.124, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.125, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[5] = Inf
test(9999.126, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.127, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[6] = -Inf
test(9999.128, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.129, identical(frollmean(x, n, algo="exact"), ma(x, n)))
x[5:7] = c(NA, Inf, -Inf)
test(9999.130, identical(frollmean(x, n), ma(x, n, nf.rm=TRUE)))
test(9999.131, identical(frollmean(x, n, algo="exact"), ma(x, n)))

#### adaptive window
ama = function(x, n, na.rm=FALSE, fill=NA, nf.rm=FALSE) {
  # adaptive moving average in R
  stopifnot((nx<-length(x))==length(n))
  if (nf.rm) x[!is.finite(x)] = NA_real_
  ans = rep(NA_real_, nx)
  for (i in seq_along(x)) {
    ans[i] = if (i >= n[i])
      mean(x[(i-n[i]+1):i], na.rm=na.rm)
    else as.double(fill)
  }
  ans
}

x = rnorm(1e3)
n = rep(20L, 1e3) # pseudo adaptive
test(9999.132, frollmean(x, n[1L]), frollmean(x, n, adaptive=TRUE)) # n auto wrapped in list
test(9999.133, frollmean(x, n[1L]), frollmean(x, list(n), adaptive=TRUE))
test(9999.134, frollmean(x, n[1L]), frollmean(x, n, algo="exact", adaptive=TRUE))

x = c(1:4,2:5,4:6,5L)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, list(n), adaptive=TRUE)
ans3 = frollmean(x, list(n), algo="exact", adaptive=TRUE)
test(9999.135, ans1, ans2)
test(9999.136, ans1, ans3)

x = data.table(x=x, y=x/2) # multiple columns and multiple windows
ln = list(n, n+1L)
ans1 = list(ama(x[[1L]], ln[[1L]]), ama(x[[1L]], ln[[2L]]), ama(x[[2L]], ln[[1L]]), ama(x[[2L]], ln[[2L]]))
ans2 = frollmean(x, ln, adaptive=TRUE)
ans3 = frollmean(x, ln, algo="exact", adaptive=TRUE)
test(9999.137, ans1, ans2)
test(9999.138, ans1, ans3)

#### adaptive fill
x = c(1:4,2:5,4:6,5L)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n, fill=150)
ans2 = frollmean(x, n, adaptive=TRUE, fill=150)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact", fill=150)
test(9999.139, ans1, ans2)
test(9999.140, ans1, ans3)

#### adaptive na.rm
x = c(1:4,NA,2:5,NA,4:6,NA,5L)
n = c(2L, 2L, 2L, 5L, 3L, 4L, 5L, 1L, 2L, 1L, 2L, 4L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, algo="exact", adaptive=TRUE)
test(9999.141, ans1, ans2)
test(9999.142, ans1, ans3)
ans1 = ama(x, n, na.rm=TRUE)
ans2 = frollmean(x, n, na.rm=TRUE, adaptive=TRUE)
ans3 = frollmean(x, n, na.rm=TRUE, algo="exact", adaptive=TRUE)
test(9999.143, ans1, ans2)
test(9999.144, ans1, ans3)
#### interactive test 3e9 vector where 2.5e9 are NAs to confirm uint_fast64_t running NA counter
if (FALSE) {
  x = c(rep(1, 3e8), rep(NA_real_, 2.5e9), rep(1, 2e8))
  n1 = 1e3; n2 = 1e4
  n = c(rep(n1, 1.5e9), rep(n2, 1.5e9))
  stopifnot(length(x)==3e9, length(n)==3e9)
  ans = frollmean(x, list(n), adaptive=TRUE)
  stopifnot(
    all.equal(ans[1:(n1+1)], c(rep(NA_real_, n1-1), 1, 1)),
    all.equal(ans[3e8+(-1:1)], c(1, 1, NA)),
    all.equal(ans[2.8e9+n2+(-1:1)], c(NA_real_, 1, 1)),
    all.equal(ans[(3e9-n2):3e9], rep(1, n2+1))
  )
}

#### adaptive limitations
test(9999.145, frollmean(1:2, 1:2, adaptive=TRUE, align="right"), c(1, 1.5))
test(9999.146, frollmean(1:2, 1:2, adaptive=TRUE, align="center"), error="using adaptive TRUE and align argument different than 'right' is not implemented")
test(9999.147, frollmean(1:2, 1:2, adaptive=TRUE, align="left"), error="using adaptive TRUE and align argument different than 'right' is not implemented")
test(9999.148, frollmean(list(1:2, 1:3), list(1:2), adaptive=TRUE), error="adaptive rolling function can only process 'x' having equal length of elements, like data.table or data.frame. If you want to call rolling function on list having variable length of elements call it for each field separately")

#### adaptive exact
fastama = function(x, n, na.rm, fill=NA) {
  if (!missing(na.rm)) stop("fast adaptive moving average implemented in R does not handle NAs, input having NAs will result in incorrect answer so not even try to compare to it")
  # fast implementation of adaptive moving average in R, in case of NAs incorrect answer
  stopifnot((nx<-length(x))==length(n))
  cs = cumsum(x)
  ans = rep(NA_real_, nx)
  for (i in seq_along(cs)) {
    ans[i] = if (i == n[i])
      cs[i]/n[i]
    else if (i > n[i])
      (cs[i]-cs[i-n[i]])/n[i]
    else as.double(fill)
  }
  ans
}
x = c(1:3, 1e9L, 2:5, 5e9, 4:6)
n = c(2L, 2L, 2L, 5L, 4L, 5L, 1L, 1L, 2L, 3L, 6L, 3L)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
test(9999.149, ans1, ans2)
test(9999.150, ans1, ans3)
test(9999.151, ans1, ans4)

x = sample(c(rnorm(1e3, 1e2), rnorm(1e1, 1e9, 1e2), abs(rnorm(1e1, 1e-9, 1e-2))))
n = sample(1:20, length(x), TRUE)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
anserr = list(
  froll_exact_f = ans1-ans2,
  froll_exact_t = ans1-ans3,
  fastama = ans1-ans4
)
errs = lapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.152, errs[["froll_exact_t"]] < errs[["froll_exact_f"]])
test(9999.153, errs[["froll_exact_t"]] < errs[["fastama"]])

x = sample(c(1:100, 5e9, 5e-9))
n = sample(1:10, length(x), TRUE)
ans1 = ama(x, n)
ans2 = frollmean(x, n, adaptive=TRUE)
ans3 = frollmean(x, n, adaptive=TRUE, algo="exact")
ans4 = fastama(x, n)
anserr = list(
  froll_exact_f = ans1-ans2,
  froll_exact_t = ans1-ans3,
  fastama = ans1-ans4
)
errs = lapply(lapply(anserr, abs), sum, na.rm=TRUE)
test(9999.154, errs[["froll_exact_t"]] < errs[["froll_exact_f"]])
test(9999.155, errs[["froll_exact_t"]] < errs[["fastama"]])

## edge cases adaptive
#### is.integer(n)
test(9999.156, frollmean(1:5, 1:5, adaptive=TRUE), seq(1,3,0.5))
#### is.integer(n) && length(n)!=length(x)
test(9999.157, frollmean(1:10, 1:5, adaptive=TRUE), error="length of integer vector(s) provided as list to 'n' argument must be equal to number of observations provided in 'x'")
#### is.list(n) && length(n[[1L]])!=length(x)
test(9999.158, frollmean(1:10, list(1:5), adaptive=TRUE), error="length of integer vector(s) provided as list to 'n' argument must be equal to number of observations provided in 'x'")

#### non-finite values (NA, NaN, Inf, -Inf)
n = c(4,1,4,5,5,4,6,5,4,4,2,3,4,3,2,4)
x = 1:16
x[5] = NaN
test(9999.159, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.160, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[6] = NA
test(9999.161, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.162, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
#### test inconsistency of NaN-NA order is consistent to https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17441
x[5] = NA
x[6] = NaN
test(9999.163, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.164, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[5] = Inf
test(9999.165, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.166, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[6] = -Inf
test(9999.167, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.168, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))
x[5:7] = c(NA, Inf, -Inf)
test(9999.169, identical(frollmean(x, n, adaptive=TRUE), ama(x, n, nf.rm=TRUE)))
test(9999.170, identical(frollmean(x, n, algo="exact", adaptive=TRUE), ama(x, n)))

## test verbose messages
x = 1:10
n = 3
test(9999.171, frollmean(x, n, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.172, frollmean(list(x, x+1), n, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 2x1",
  "frollfunR: 2 column(s) and 1 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.173, frollmean(x, c(n, n+1), verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x2",
  "frollfunR: 1 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanFast: running for input length 10, window 4, hasna 0, narm 0"))
test(9999.174, frollmean(list(x, x+1), c(n, n+1), verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 2x2",
  "frollfunR: 2 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanFast: running for input length 10, window 4, hasna 0, narm 0"))
test(9999.175, frollmean(x, n, algo="exact", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
  "frollmeanExact: running for input length 10, window 3, hasna 0, narm 0"))
test(9999.176, frollmean(x, n, align="center", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmean: align 0, shift answer by -1"))
test(9999.177, frollmean(x, n, align="left", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmean: align -1, shift answer by -2"))
nn = c(1:4,2:3,1:4)
test(9999.178, frollmean(x, nn, adaptive=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "fadaptiverollmeanFast: running for input length 10, hasna 0, narm 0"))
test(9999.179, frollmean(x, nn, algo="exact", adaptive=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
  "fadaptiverollmeanExact: running for input length 10, hasna 0, narm 0"))

x[8] = NA
test(9999.180, frollmean(x, n, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "frollmeanFast: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"))
test(9999.181, frollmean(x, n, algo="exact", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
  "frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanExact: NA (or other non-finite) value(s) are present in input, na.rm was FALSE so in 'exact' implementation NAs were handled already, no need to re-run"))
test(9999.182, frollmean(x, nn, adaptive=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped",
  "fadaptiverollmeanFast: running for input length 10, hasna 0, narm 0",
  "fadaptiverollmeanFast: NA (or other non-finite) value(s) are present in input, re-running with extra care for NAs"))
test(9999.183, frollmean(x, nn, algo="exact", adaptive=TRUE, verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
  "fadaptiverollmeanExact: running for input length 10, hasna 0, narm 0",
  "fadaptiverollmeanExact: NA (or other non-finite) value(s) are present in input, na.rm was FALSE so in 'exact' implementation NAs were handled already, no need to re-run"))

d = as.data.table(list(1:10/2, 10:1/4))
test(9999.184, frollmean(d[,1], 3, algo="exact", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 1x1",
  "frollfunR: single column and single window, parallel processing by multiple answer vectors skipped but 'exact' version of rolling function will compute results in parallel",
  "frollmeanExact: running for input length 10, window 3, hasna 0, narm 0"
))
test(9999.185, frollmean(d, 3:4, algo="exact", verbose=TRUE), output=c(
  "frollfunR: allocating memory for results 2x2",
  "frollfunR: 2 column(s) and 2 window(s), entering parallel execution, but actually single threaded due to enabled verbose which is not thread safe, 'exact' version of rolling function will compute results in parallel anyway as it does not print with verbose",
  "frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanExact: running for input length 10, window 4, hasna 0, narm 0",
  "frollmeanExact: running for input length 10, window 3, hasna 0, narm 0",
  "frollmeanExact: running for input length 10, window 4, hasna 0, narm 0"
))

## test warnings
test(9999.186, frollmean(c(1:2,NA,4:10), 4, hasNA=FALSE), c(rep(NA_real_, 6), 5.5, 6.5, 7.5, 8.5), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")
test(9999.187, frollmean(c(1:2,NA,4:10), 2, hasNA=FALSE), c(NA, 1.5, NA, NA, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5), warning="hasNA=FALSE used but NA (or other non-finite) value(s) are present in input, use default hasNA=NA to avoid this warning")

## validation

set.seed(108)
makeNA = function(x, ratio=0.1) {id=sample(length(x), as.integer(length(x) * ratio)); x[id]=NA; x}
num = 9999.5000 # book 4000 tests for zoo
#### against zoo
if (requireNamespace("zoo", quietly=TRUE)) {
  drollapply = function(...) as.double(zoo::rollapply(...)) # rollapply is not consistent in data type of answer, force to double
  zoo_compare = function(x, n) {
    num.step = 0.0001
    #### fun, align, na.rm, fill, exact
    for (fun in c("mean")) { # ,"sum"
      for (align in c("right","center","left")) {
        for (na.rm in c(FALSE, TRUE)) {
          for (fill in c(NA_real_, 0)) {
            for (algo in c("fast", "exact")) {
              num <<- num + num.step
              eval(substitute( # so we can have values displayed in output/log rather than variables
                test(.num,
                     froll(.fun, x, n, align=.align, fill=.fill, na.rm=.na.rm, algo=.algo),
                     drollapply(x, n, FUN=.fun, fill=.fill, align=.align, na.rm=.na.rm)),
                list(.num=num, .fun=fun, .align=align, .fill=fill, .na.rm=na.rm, .algo=algo)
              ))
            }
          }
        }
      }
    }
  }
  ## no NA
  x = rnorm(1e3); n = 50 # x even, n even
  zoo_compare(x, n)
  x = rnorm(1e3+1); n = 50 # x odd, n even
  zoo_compare(x, n)
  x = rnorm(1e3); n = 51 # x even, n odd
  zoo_compare(x, n)
  x = rnorm(1e3+1); n = 51 # x odd, n odd
  zoo_compare(x, n)
  ## leading and trailing NAs
  x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = 50
  zoo_compare(x, n)
  x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = 50
  zoo_compare(x, n)
  x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = 51
  zoo_compare(x, n)
  x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = 51
  zoo_compare(x, n)
  ## random NA
  x = makeNA(rnorm(1e3)); n = 50
  zoo_compare(x, n)
  x = makeNA(rnorm(1e3+1)); n = 50
  zoo_compare(x, n)
  x = makeNA(rnorm(1e3)); n = 51
  zoo_compare(x, n)
  x = makeNA(rnorm(1e3+1)); n = 51
  zoo_compare(x, n)
}
#### adaptive moving average compare
num = 9999.9000 # 1000 tests should be more than enough
afun = function(fun, x, n, na.rm=FALSE, fill=NA, nf.rm=FALSE) {
  # adaptive moving average in R
  stopifnot((nx<-length(x))==length(n))
  ans = rep(NA_real_, nx)
  if (nf.rm) x[!is.finite(x)] = NA_real_
  FUN = match.fun(fun)
  for (i in seq_along(x)) {
    ans[i] = if (i >= n[i])
      FUN(x[(i-n[i]+1):i], na.rm=na.rm)
    else as.double(fill)
  }
  ans
}
afun_compare = function(x, n) {
  num.step = 0.0001
  #### fun, na.rm, fill, exact
  for (fun in c("mean")) { # ,"sum"
    for (na.rm in c(FALSE, TRUE)) {
      for (fill in c(NA_real_, 0)) {
        for (algo in c("fast", "exact")) {
          num <<- num + num.step
          eval(substitute(
            test(.num,
                 froll(.fun, x, n, fill=.fill, na.rm=.na.rm, algo=.algo, adaptive=TRUE),
                 afun(.fun, x, n, fill=.fill, na.rm=.na.rm, nf.rm=.nf.rm)),
            list(.num=num, .fun=fun, .fill=fill, .na.rm=na.rm, .algo=algo, .nf.rm=algo!="exact")
          ))
        }
      }
    }
  }
}
#### no NA
x = rnorm(1e3); n = sample(50, length(x), TRUE) # x even, n even
afun_compare(x, n)
x = rnorm(1e3+1); n = sample(50, length(x), TRUE) # x odd, n even
afun_compare(x, n)
x = rnorm(1e3); n = sample(51, length(x), TRUE) # x even, n odd
afun_compare(x, n)
x = rnorm(1e3+1); n = sample(51, length(x), TRUE) # x odd, n odd
afun_compare(x, n)
#### leading and trailing NAs
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3), rep(NA, 60)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
x = c(rep(NA, 60), rnorm(1e3+1), rep(NA, 60)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
#### random NA
x = makeNA(rnorm(1e3)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = sample(50, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
x = makeNA(rnorm(1e3+1)); n = sample(51, length(x), TRUE)
afun_compare(x, n)
rm(num)

setDTthreads(oldDTthreads)
cat("froll unit tests successfully passed\n")