1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
# styler: off
#' Return filtered or sliced data frame, or row indices
#'
#' Return a filtered (or sliced) data frame or row indices of a data frame that
#' match a specific condition. `data_filter()` works like `data_match()`, but works
#' with logical expressions or row indices of a data frame to specify matching
#' conditions.
#'
#' @param x A data frame.
#' @param to A data frame matching the specified conditions. Note that if
#' `match` is a value other than `"and"`, the original row order might be
#' changed. See 'Details'.
#' @param filter A logical expression indicating which rows to keep, or a numeric
#' vector indicating the row indices of rows to keep. Can also be a string
#' representation of a logical expression. e.g. `filter = "x > 4"`. This might
#' be useful when used in packages to avoid defining undefined global variables.
#' @param match String, indicating with which logical operation matching
#' conditions should be combined. Can be `"and"` (or `"&"`), `"or"` (or `"|"`)
#' or `"not"` (or `"!"`).
#' @param return_indices Logical, if `FALSE`, return the vector of rows that
#' can be used to filter the original data frame. If `FALSE` (default),
#' returns directly the filtered data frame instead of the row indices.
#' @param drop_na Logical, if `TRUE`, missing values (`NA`s) are removed before
#' filtering the data. This is the default behaviour, however, sometimes when
#' row indices are requested (i.e. `return_indices=TRUE`), it might be useful
#' to preserve `NA` values, so returned row indices match the row indices of
#' the original data frame.
#' @param ... Not used.
#'
#' @return A filtered data frame, or the row indices that match the specified configuration.
#'
#' @details For `data_match()`, if `match` is either `"or"` or `"not"`, the
#' original row order from `x` might be changed. If preserving row order is
#' required, use `data_filter()` instead.
#'
#' ```
#' # mimics subset() behaviour, preserving original row order
#' head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#' #> mpg vs am
#' #> Mazda RX4 21.0 0 1
#' #> Mazda RX4 Wag 21.0 0 1
#' #> Datsun 710 22.8 1 1
#' #> Hornet Sportabout 18.7 0 0
#' #> Duster 360 14.3 0 0
#' #> Merc 450SE 16.4 0 0
#'
#' # re-sorting rows
#' head(data_match(mtcars[c("mpg", "vs", "am")],
#' data.frame(vs = 0, am = 1),
#' match = "or"))
#' #> mpg vs am
#' #> Mazda RX4 21.0 0 1
#' #> Mazda RX4 Wag 21.0 0 1
#' #> Hornet Sportabout 18.7 0 0
#' #> Duster 360 14.3 0 0
#' #> Merc 450SE 16.4 0 0
#' #> Merc 450SL 17.3 0 0
#' ```
#'
#' While `data_match()` works with data frames to match conditions against,
#' `data_filter()` is basically a wrapper around `subset(subset = <filter>)`.
#' However, unlike `subset()`, it preserves label attributes and is useful when
#' working with labelled data.
#'
#' @examples
#' data_match(mtcars, data.frame(vs = 0, am = 1))
#' data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
#'
#' # observations where "vs" is NOT 0 AND "am" is NOT 1
#' data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
#' # equivalent to
#' data_filter(mtcars, vs != 0 & am != 1)
#'
#' # observations where EITHER "vs" is 0 OR "am" is 1
#' data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
#' # equivalent to
#' data_filter(mtcars, vs == 0 | am == 1)
#'
#' # slice data frame by row indices
#' data_filter(mtcars, 5:10)
#'
#' # Define a custom function containing data_filter() and pass variable names
#' # to it using curly brackets
#' my_filter <- function(data, variable) {
#' data_filter(data, {variable} <= 20)
#' }
#' my_filter(mtcars, "mpg")
#'
#' # Pass complete filter-condition as string
#' my_filter <- function(data, condition) {
#' data_filter(data, {condition})
#' }
#' my_filter(mtcars, "am != 0")
#'
#' # string can also be used directly as argument
#' data_filter(mtcars, "am != 0")
#' @inherit data_rename seealso
#' @export
data_match <- function(x, to, match = "and", return_indices = FALSE, drop_na = TRUE, ...) {
if (!is.data.frame(to)) {
to <- as.data.frame(to)
}
original_x <- x
# evaluate
match <- match.arg(tolower(match), c("and", "&", "&&", "or", "|", "||", "!", "not"))
match <- switch(match,
"&" = ,
"&&" = ,
"and" = "and",
"!" = ,
"not" = "not",
"or"
)
# sanity check
shared_columns <- intersect(colnames(x), colnames(to))
if (is.null(shared_columns) || length(shared_columns) == 0) {
insight::format_error(
"None of the columns from the data frame with matching conditions were found in `x`."
)
}
# only select common columns
x <- x[shared_columns]
# prepare
if (identical(match, "or")) {
idx <- c()
} else {
# remove missings before matching
if (isTRUE(drop_na)) {
x <- x[stats::complete.cases(x), , drop = FALSE]
}
idx <- seq_len(nrow(x))
}
# Find matching rows
for (col in names(to)) {
values <- x[[col]]
if (match == "or") {
idx <- union(idx, which(values %in% to[[col]]))
} else if (match == "not") {
idx <- idx[!values[idx] %in% to[[col]]]
} else {
idx <- idx[values[idx] %in% to[[col]]]
}
}
# prepare output
if (isFALSE(return_indices)) {
out <- original_x[idx, , drop = FALSE]
# restore value and variable labels
for (i in colnames(out)) {
attr(out[[i]], "label") <- attr(original_x[[i]], "label", exact = TRUE)
attr(out[[i]], "labels") <- attr(original_x[[i]], "labels", exact = TRUE)
}
} else {
out <- idx
}
# add back custom attributes
out <- .replace_attrs(out, attributes(original_x))
out
}
#' @rdname data_match
#' @export
data_filter <- function(x, filter, ...) {
UseMethod("data_filter")
}
#' @export
data_filter.data.frame <- function(x, filter, ...) {
condition <- substitute(filter)
dots <- list(...)
# if called from data_filter.grouped_df, the substitute above just gets
# "filter" whereas it needs to pass the condition
if ("called_from_group" %in% names(dots) && dots$called_from_group) {
condition <- substitute(filter, env = parent.frame(3L))
}
# condition can be a numeric vector, to slice rows by indices,
# or a logical condition to filter observations. first, we check
# for numeric vector. the logical condition can also be passed
# as character vector, which allows to use data_filer() from inside
# other function w/o the need to define "globalVariables".
# numeric vector to slice data frame?
rows <- try(eval(condition, envir = parent.frame()), silent = TRUE)
if (is.numeric(rows)) {
out <- x[rows, , drop = FALSE]
} else {
if (!is.character(condition)) {
condition <- insight::safe_deparse(condition)
}
# Check syntax of the filter. Must be done *before* calling subset()
# (cf easystats/datawizard#237)
.check_filter_syntax(condition)
has_curley <- grepl("{", condition, fixed = TRUE)
if (has_curley) {
condition <- gsub("\\{ ", "\\{", condition)
condition <- gsub(" \\}", "\\}", condition)
curley_vars <- regmatches(condition, gregexpr("[^{\\}]+(?=\\})", condition, perl = TRUE))
curley_vars <- unique(unlist(curley_vars))
for (i in curley_vars) {
if (isTRUE(dots$called_from_group)) {
token <- get(i, envir = parent.frame(4L))
} else {
token <- get(i, envir = parent.frame())
}
condition <- gsub(paste0("{", i, "}"), token, condition, fixed = TRUE)
}
}
out <- tryCatch(
subset(x, subset = eval(parse(text = condition), envir = new.env())),
warning = function(e) NULL,
error = function(e) NULL
)
if (is.null(out)) {
insight::format_error(
"Filtering did not work. Please check the syntax of your `filter` argument."
)
}
}
# restore value and variable labels
for (i in colnames(out)) {
attr(out[[i]], "label") <- attr(x[[i]], "label", exact = TRUE)
attr(out[[i]], "labels") <- attr(x[[i]], "labels", exact = TRUE)
}
# add back custom attributes
out <- .replace_attrs(out, attributes(x))
out
}
#' @export
data_filter.grouped_df <- function(x, filter, ...) {
# works only for dplyr >= 0.8.0
grps <- attr(x, "groups", exact = TRUE)
grps <- grps[[".rows"]]
out <- lapply(grps, function(grp) {
data_filter.data.frame(x[grp, ], filter, called_from_group = TRUE, ...)
})
out <- do.call(rbind, out)
if (!insight::object_has_rownames(x)) {
rownames(out) <- NULL
}
out
}
# helper -------------------
.check_filter_syntax <- function(condition) {
# NOTE: We cannot check for `=` when "filter" is not a character vector
# because the function will then fail in general. I.e.,
# "data_filter(mtcars, filter = mpg > 10 & cyl = 4)" will not start
# running this function and never reaches the first code line,
# but immediately stops...
tmp <- gsub("==", "", condition, fixed = TRUE)
tmp <- gsub("<=", "", tmp, fixed = TRUE)
tmp <- gsub(">=", "", tmp, fixed = TRUE)
tmp <- gsub("!=", "", tmp, fixed = TRUE)
# Give more informative message to users
# about possible misspelled comparisons / logical conditions
# check if "=" instead of "==" was used?
if (any(grepl("=", tmp, fixed = TRUE))) {
insight::format_error(
"Filtering did not work. Please check if you need `==` (instead of `=`) for comparison."
)
}
# check if "&&" etc instead of "&" was used?
logical_operator <- NULL
if (any(grepl("&&", condition, fixed = TRUE))) {
logical_operator <- "&&"
}
if (any(grepl("||", condition, fixed = TRUE))) {
logical_operator <- "||"
}
if (!is.null(logical_operator)) {
insight::format_error(
paste0(
"Filtering did not work. Please check if you need `",
substr(logical_operator, 0, 1),
"` (instead of `", logical_operator, "`) as logical operator."
)
)
}
}
# styler: on
|