1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
#' @title Read (import) data files from various sources
#' @name data_read
#'
#' @description
#' This functions imports data from various file types. It is a small wrapper
#' around `haven::read_spss()`, `haven::read_stata()`, `haven::read_sas()`,
#' `readxl::read_excel()` and `data.table::fread()` resp. `readr::read_delim()`
#' (the latter if package **data.table** is not installed). Thus, supported file
#' types for importing data are data files from SPSS, SAS or Stata, Excel files
#' or text files (like '.csv' files). All non-supported file types are passed
#' to `rio::import()`.
#'
#' @param path Character string, the file path to the data file.
#' @param path_catalog Character string, path to the catalog file. Only relevant
#' for SAS data files.
#' @param encoding The character encoding used for the file. Usually not needed.
#' @param convert_factors If `TRUE` (default), numeric variables, where all
#' values have a value label, are assumed to be categorical and converted
#' into factors. If `FALSE`, no variable types are guessed and no conversion
#' of numeric variables into factors will be performed. See also section
#' 'Differences to other packages'.
#' @param verbose Toggle warnings and messages.
#' @param ... Arguments passed to the related `read_*()` function.
#'
#' @return A data frame.
#'
#' @section Supported file types:
#' `data_read()` is a wrapper around the **haven**, **data.table**, **readr**
#' **readxl** and **rio** packages. Currently supported file types are `.txt`,
#' `.csv`, `.xls`, `.xlsx`, `.sav`, `.por`, `.dta` and `.sas` (and related
#' files). All other file types are passed to `rio::import()`.
#'
#' @section Compressed files (zip) and URLs:
#' `data_read()` can also read the above mentioned files from URLs or from
#' inside zip-compressed files. Thus, `path` can also be a URL to a file like
#' `"http://www.url.com/file.csv"`. When `path` points to a zip-compressed file,
#' and there are multiple files inside the zip-archive, then the first supported
#' file is extracted and loaded.
#'
#' @section General behaviour:
#' `data_read()` detects the appropriate `read_*()` function based on the
#' file-extension of the data file. Thus, in most cases it should be enough to
#' only specify the `path` argument. However, if more control is needed, all
#' arguments in `...` are passed down to the related `read_*()` function.
#'
#' @section Differences to other packages that read foreign data formats:
#' `data_read()` is most comparable to `rio::import()`. For data files from
#' SPSS, SAS or Stata, which support labelled data, variables are converted into
#' their most appropriate type. The major difference to `rio::import()` is that
#' `data_read()` automatically converts fully labelled numeric variables into
#' factors, where imported value labels will be set as factor levels. If a
#' numeric variable has _no_ value labels or less value labels than values, it
#' is not converted to factor. In this case, value labels are preserved as
#' `"labels"` attribute. Character vectors are preserved. Use
#' `convert_factors = FALSE` to remove the automatic conversion of numeric
#' variables to factors.
#'
#' @export
data_read <- function(path,
path_catalog = NULL,
encoding = NULL,
convert_factors = TRUE,
verbose = TRUE,
...) {
# extract first valid file from zip-file
if (.file_ext(path) == "zip") {
path <- .extract_zip(path)
}
# read data
out <- switch(.file_ext(path),
"txt" = ,
"csv" = .read_text(path, encoding, verbose, ...),
"xls" = ,
"xlsx" = .read_excel(path, encoding, verbose, ...),
"sav" = ,
"por" = .read_spss(path, encoding, convert_factors, verbose, ...),
"dta" = .read_stata(path, encoding, convert_factors, verbose, ...),
"sas7bdat" = .read_sas(path, path_catalog, encoding, convert_factors, verbose, ...),
.read_unknown(path, convert_factors, verbose, ...)
)
# tell user about empty columns
if (verbose) {
empty_cols <- empty_columns(out)
# only message if we actually have empty columns
if (length(empty_cols)) {
insight::format_alert(
sprintf("Following %i variables are empty:", length(empty_cols)),
text_concatenate(names(empty_cols)),
"\nUse `remove_empty_columns()` to remove them from the data frame."
)
}
}
out
}
# helper -----------------------
.file_ext <- function(x) {
pos <- regexpr("\\.([[:alnum:]]+)$", x)
ifelse(pos > -1L, substring(x, pos + 1L), "")
}
.extract_zip <- function(path) {
files <- utils::unzip(path, list = TRUE)
files_ext <- sapply(files$Name, .file_ext)
supported_filetypes <- c("txt", "csv", "xls", "xlsx", "sav", "por", "dta")
dest <- files$Name[which(files_ext %in% supported_filetypes)]
if (length(dest) > 0) {
d <- tempfile()
dir.create(d)
utils::unzip(path, exdir = d)
path <- file.path(d, dest[1])
} else {
insight::format_error("The zip-file does not contain any supported file types.")
}
path
}
# process imported data from SPSS, SAS or Stata -----------------------
.post_process_imported_data <- function(x, convert_factors, verbose) {
# user may decide whether we automatically detect variable type or not
if (isTRUE(convert_factors)) {
if (verbose) {
message("Preparing data... Almost there!")
}
x[] <- lapply(x, function(i) {
# only proceed if not all missing
if (!all(is.na(i))) {
# save labels
value_labels <- attr(i, "labels", exact = TRUE)
variable_labels <- attr(i, "label", exact = TRUE)
# filter, so only matching value labels remain
value_labels <- value_labels[value_labels %in% unique(i)]
# guess variable type
if (!is.character(i)) {
# if all values are labelled, we assume factor. Use labels as levels
if (!is.null(value_labels) && length(value_labels) == insight::n_unique(i)) {
i <- factor(as.character(i), labels = names(value_labels))
value_labels <- NULL
} else {
# else, fall back to numeric
i <- as.numeric(i)
}
} else {
# we need this to drop haven-specific class attributes
i <- as.character(i)
}
# drop unused value labels
if (!is.null(value_labels) && length(value_labels <- value_labels[value_labels %in% unique(i)])) {
attr(i, "labels") <- value_labels
}
# add back variable label
attr(i, "label") <- variable_labels
}
i
})
}
class(x) <- "data.frame"
x
}
# read functions -----------------------
.read_spss <- function(path, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- haven::read_sav(file = path, encoding = encoding, user_na = FALSE, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_stata <- function(path, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- haven::read_dta(file = path, encoding = encoding, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_sas <- function(path, path_catalog, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- haven::read_sas(data_file = path, catalog_file = path_catalog, encoding = encoding, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_excel <- function(path, encoding, verbose, ...) {
insight::check_if_installed("readxl", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- readxl::read_excel(path, ...)
class(out) <- "data.frame"
out
}
.read_text <- function(path, encoding, verbose, ...) {
if (insight::check_if_installed("data.table", quietly = TRUE)) {
out <- data.table::fread(input = path, ...)
class(out) <- "data.frame"
return(out)
}
insight::check_if_installed("readr", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- readr::read_delim(path, ...)
class(out) <- "data.frame"
out
}
.read_unknown <- function(path, convert_factors, verbose, ...) {
insight::check_if_installed("rio", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
message("Reading data...")
}
out <- rio::import(file = path, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
|