1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#' Rescale Variables to a New Range
#'
#' Rescale variables to a new range.
#' Can also be used to reverse-score variables (change the keying/scoring direction).
#'
#' @inheritParams categorize
#' @inheritParams find_columns
#' @inheritParams standardize.data.frame
#'
#' @param to Numeric vector of length 2 giving the new range that the variable will have after rescaling.
#' To reverse-score a variable, the range should be given with the maximum value first.
#' See examples.
#' @param range Initial (old) range of values. If `NULL`, will take the range of
#' the input vector (`range(x)`).
#' @param ... Arguments passed to or from other methods.
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @examples
#' rescale(c(0, 1, 5, -5, -2))
#' rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
#' rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))
#'
#' # Specify the "theoretical" range of the input vector
#' rescale(c(1, 3, 4), to = c(0, 40), range = c(0, 4))
#'
#' # Reverse-score a variable
#' rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
#' rescale(c(1, 2, 3, 4, 5), to = c(2, -2))
#'
#' # Data frames
#' head(rescale(iris, to = c(0, 1)))
#' head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))
#'
#' # One can specify a list of ranges
#' head(rescale(iris, to = list(
#' "Sepal.Length" = c(0, 1),
#' "Petal.Length" = c(-1, 0)
#' )))
#' @inherit data_rename
#'
#' @return A rescaled object.
#'
#' @seealso See [makepredictcall.dw_transformer()] for use in model formulas.
#' @family transform utilities
#'
#' @export
rescale <- function(x, ...) {
UseMethod("rescale")
}
#' @rdname rescale
#' @export
change_scale <- function(x, ...) {
# Alias for rescale()
rescale(x, ...)
}
#' @export
rescale.default <- function(x, verbose = TRUE, ...) {
if (isTRUE(verbose)) {
insight::format_alert(
paste0("Variables of class `", class(x)[1], "` can't be rescaled and remain unchanged.")
)
}
x
}
#' @rdname rescale
#' @export
rescale.numeric <- function(x,
to = c(0, 100),
range = NULL,
verbose = TRUE,
...) {
if (is.null(to)) {
return(x)
}
# Warning if all NaNs
if (all(is.na(x))) {
return(x)
}
if (is.null(range)) {
range <- c(min(x, na.rm = TRUE), max(x, na.rm = TRUE))
}
# called from "makepredictcal()"? Then we have additional arguments
dot_args <- list(...)
required_dot_args <- c("min_value", "max_value", "new_min", "new_max")
flag_predict <- FALSE
if (all(required_dot_args %in% names(dot_args))) {
# we gather informatiom about the original data, which is needed
# for "predict()" to work properly when "rescale()" is called
# in formulas on-the-fly, e.g. "lm(mpg ~ rescale(hp), data = mtcars)"
min_value <- dot_args$min_value
max_value <- dot_args$max_value
new_min <- dot_args$new_min
new_max <- dot_args$new_max
flag_predict <- TRUE
} else {
min_value <- ifelse(is.na(range[1]), min(x, na.rm = TRUE), range[1])
max_value <- ifelse(is.na(range[2]), max(x, na.rm = TRUE), range[2])
new_min <- ifelse(is.na(to[1]), min_value, to[1])
new_max <- ifelse(is.na(to[2]), max_value, to[2])
}
# Warning if only one value
if (!flag_predict && insight::has_single_value(x) && is.null(range)) {
if (verbose) {
insight::format_warning(
"A `range` must be provided for data with only one unique value."
)
}
return(x)
}
out <- as.vector((new_max - new_min) / (max_value - min_value) *
(x - min_value) + new_min)
attr(out, "min_value") <- min_value
attr(out, "max_value") <- max_value
attr(out, "new_min") <- new_min
attr(out, "new_max") <- new_max
attr(out, "range_difference") <- max_value - min_value
attr(out, "to_range") <- c(new_min, new_max)
class(out) <- c("dw_transformer", class(out))
out
}
#' @export
rescale.grouped_df <- function(x,
select = NULL,
exclude = NULL,
to = c(0, 100),
range = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...) {
info <- attributes(x)
# works only for dplyr >= 0.8.0
grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
x <- as.data.frame(x)
for (rows in grps) {
x[rows, ] <- rescale(
x[rows, , drop = FALSE],
select = select,
exclude = exclude,
to = to,
range = range,
...
)
}
# set back class, so data frame still works with dplyr
attributes(x) <- info
x
}
#' @rdname rescale
#' @export
rescale.data.frame <- function(x,
select = NULL,
exclude = NULL,
to = c(0, 100),
range = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...) {
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# Transform the range so that it is a list now
if (!is.null(range)) {
if (!is.list(range)) {
range <- stats::setNames(rep(list(range), length(select)), select)
}
}
# Transform the 'to' so that it is a list now
if (!is.list(to)) {
to <- stats::setNames(rep(list(to), length(select)), select)
}
x[select] <- as.data.frame(sapply(select, function(n) {
rescale(x[[n]], to = to[[n]], range = range[[n]])
}, simplify = FALSE))
x
}
|