1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#' Reshape (pivot) data from wide to long
#'
#' This function "lengthens" data, increasing the number of rows and decreasing
#' the number of columns. This is a dependency-free base-R equivalent of
#' `tidyr::pivot_longer()`.
#'
#' @param data A data frame to pivot.
#' @param names_to The name of the new column that will contain the column
#' names.
#' @param names_prefix A regular expression used to remove matching text from
#' the start of each variable name.
#' @param names_sep,names_pattern If `names_to` contains multiple values, this
#' argument controls how the column name is broken up.
#' `names_pattern` takes a regular expression containing matching groups, i.e. "()".
#' @param values_to The name of the new column that will contain the values of
#' the pivoted variables.
#' @param values_drop_na If `TRUE`, will drop rows that contain only `NA` in the
#' `values_to` column. This effectively converts explicit missing values to
#' implicit missing values, and should generally be used only when missing values
#' in data were created by its structure.
#' @param rows_to The name of the column that will contain the row names or row
#' numbers from the original data. If `NULL`, will be removed.
#' @param ... Currently not used.
#' @inheritParams find_columns
#' @param cols Identical to `select`. This argument is here to ensure compatibility
#' with `tidyr::pivot_longer()`. If both `select` and `cols` are provided, `cols`
#' is used.
#' @param colnames_to Deprecated. Use `names_to` instead.
#'
#' @return If a tibble was provided as input, `reshape_longer()` also returns a
#' tibble. Otherwise, it returns a data frame.
#'
#' @examplesIf requireNamespace("psych") && requireNamespace("tidyr")
#' wide_data <- data.frame(replicate(5, rnorm(10)))
#'
#' # Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:5))
#' data_to_long(wide_data)
#'
#' # Customizing the names
#' data_to_long(wide_data,
#' select = c(1, 2),
#' names_to = "Column",
#' values_to = "Numbers",
#' rows_to = "Row"
#' )
#'
#' # Full example
#' # ------------------
#' data <- psych::bfi # Wide format with one row per participant's personality test
#'
#' # Pivot long format
#' data_to_long(data,
#' select = regex("\\d"), # Select all columns that contain a digit
#' names_to = "Item",
#' values_to = "Score",
#' rows_to = "Participant"
#' )
#'
#' reshape_longer(
#' tidyr::who,
#' select = new_sp_m014:newrel_f65,
#' names_to = c("diagnosis", "gender", "age"),
#' names_pattern = "new_?(.*)_(.)(.*)",
#' values_to = "count"
#' )
#'
#' @inherit data_rename
#' @export
data_to_long <- function(data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to) {
# Check args
if (!missing(colnames_to)) {
.is_deprecated("colnames_to", "names_to")
if (is.null(names_to)) {
names_to <- colnames_to
}
}
# Prefer "cols" over "select" for compat with tidyr::pivot_longer
if (!missing(cols)) {
select <- substitute(cols)
cols <- .select_nse(
select,
data,
exclude = NULL,
ignore_case = ignore_case,
regex = regex,
verbose = FALSE
)
} else {
if (!missing(select) || !is.null(select)) {
cols <- .select_nse(
select,
data,
exclude = NULL,
ignore_case = ignore_case,
regex = regex,
verbose = FALSE
)
} else {
insight::format_error(
"You need to specify columns to pivot, either with `select` or `cols`."
)
}
}
# nothing to select?
if (length(cols) == 0L) {
insight::format_error("No columns found for reshaping data.")
}
if (length(names_to) > 1L && is.null(names_sep) && is.null(names_pattern)) {
insight::format_error(
"If you supply multiple names in `names_to`, you must also supply one of `names_sep` or `names_pattern`."
)
}
if (length(names_to) == 1L) {
if (!is.null(names_sep)) {
insight::format_error(
"You can't use `names_sep` when `names_to` is of length 1."
)
}
if (!is.null(names_pattern)) {
insight::format_error(
"You can't use `names_pattern` when `names_to` is of length 1."
)
}
}
# save custom attributes
custom_attr <- attributes(data)
# Remove tidyverse attributes, will add them back at the end
if (inherits(data, "tbl_df")) {
tbl_input <- TRUE
data <- as.data.frame(data, stringsAsFactors = FALSE)
} else {
tbl_input <- FALSE
}
if (any(names_to %in% setdiff(names(data), cols))) {
insight::format_error(
"Some values of the columns specified in `names_to` are already present as column names.",
paste0(
"Either use another value in `names_to` or rename the following columns: ",
text_concatenate(names_to[which(names_to %in% setdiff(names(data), cols))])
)
)
}
not_selected <- setdiff(names(data), cols)
# create a temp id so that we know how to rearrange the rows once the data is
# stacked
not_stacked <- data[, not_selected, drop = FALSE]
not_stacked[["_Rows"]] <- coerce_to_numeric(row.names(data))
# stack the selected columns
stacked_data <- .stack(data[, cols, drop = FALSE])[, 2:1]
# reorder the rows to have a repeated sequence when all vars are selected to
# pivot
#
# See with following example:
# wide_data <- data.frame(replicate(5, rnorm(10)))
# data_to_long(wide_data)
needs_to_rearrange <- length(not_selected) == 0L && is.null(rows_to)
if (isTRUE(needs_to_rearrange)) {
# https://stackoverflow.com/questions/73984957/efficient-way-to-reorder-rows-to-have-a-repeated-sequence
stacked_data <- stacked_data[c(
matrix(
seq_len(nrow(stacked_data)),
nrow = length(unique(stacked_data$ind)),
byrow = TRUE
)
), ]
row.names(stacked_data) <- NULL
}
stacked_data <- data_rename(stacked_data, "values", values_to)
# split columns if several names in names_to or names_pattern is specified
if (length(names_to) > 1L) {
if (is.null(names_pattern)) {
# faster than strsplit
tmp <- utils::read.csv(
text = stacked_data$ind,
sep = names_sep,
stringsAsFactors = FALSE,
header = FALSE
)
names(tmp) <- paste0("V", seq_len(ncol(tmp)))
tmp[tmp == ""] <- NA
stacked_data$ind <- NULL
stacked_data <- cbind(tmp, stacked_data)
} else {
tmp <- regmatches(
unique(stacked_data$ind),
regexec(names_pattern, unique(stacked_data$ind))
)
tmp <- as.data.frame(do.call(rbind, tmp), stringsAsFactors = FALSE)
names(tmp) <- c("ind", names_to)
# cbind + match is faster than merge
# cbind doesn't remove identical columns so we need to manually remove "ind"
# which is in both datasets
stacked_data <- cbind(stacked_data, tmp[match(stacked_data[["ind"]], tmp[["ind"]]), -1])
stacked_data$ind <- NULL
}
}
stacked_data <- data_relocate(stacked_data, select = values_to, after = -1)
# reunite unselected data with stacked data
out <- cbind(
not_stacked, stats::setNames(stacked_data, c(names_to, values_to)),
row.names = NULL
)
if (!is.null(names_prefix)) {
if (length(names_to) > 1L) {
insight::format_error(
"`names_prefix` only works when `names_to` is of length 1."
)
}
out[[names_to]] <- gsub(paste0("^", names_prefix), "", out[[names_to]])
}
# rearrange the rows with the temp id
if (length(not_selected) > 0L) {
out <- data_arrange(out, "_Rows")
}
# Remove or rename the row index
if (is.null(rows_to)) {
out[["_Rows"]] <- NULL
} else {
out <- data_rename(out, "_Rows", rows_to)
}
if (values_drop_na) {
out <- out[!is.na(out[, values_to]), ]
}
# add back attributes
out <- .replace_attrs(out, custom_attr)
# add back tidyverse attributes
if (isTRUE(tbl_input)) {
class(out) <- c("tbl_df", "tbl", "data.frame")
}
# reset row names
if (!insight::object_has_rownames(data)) {
row.names(out) <- NULL
}
out
}
#' Code adapted from utils::stack (but largely modified)
#'
#' @noRd
.stack <- function(x) {
ind <- rep(names(x), times = lengths(x))
# use do.call("c", ...) instead of unlist to preserve the date format (but a
# bit slower)
# can't use do.call("c", ...) all the time because its behavior changed with
# factors in 4.1.0
values_are_dates <- all(
vapply(x, .is_date, FUN.VALUE = logical(1))
)
if (values_are_dates) {
data.frame(values = do.call("c", unname(x)), ind, stringsAsFactors = FALSE)
} else {
data.frame(values = unlist(unname(x)), ind, stringsAsFactors = FALSE)
}
}
#' @rdname data_to_long
#' @export
reshape_longer <- data_to_long
|