1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
#' Quantify the smoothness of a vector
#'
#' @param x Numeric vector (similar to a time series).
#' @param method Can be "diff" (the standard deviation of the standardized
#' differences) or "cor" (default, lag-one autocorrelation).
#' @param lag An integer indicating which lag to use. If less than 1, will be
#' interpreted as expressed in percentage of the length of the vector.
#' @inheritParams skewness
#'
#' @examples
#' x <- (-10:10)^3 + rnorm(21, 0, 100)
#' plot(x)
#' smoothness(x, method = "cor")
#' smoothness(x, method = "diff")
#' @return Value of smoothness.
#' @references https://stats.stackexchange.com/questions/24607/how-to-measure-smoothness-of-a-time-series-in-r
#'
#' @export
smoothness <- function(x,
method = "cor",
lag = 1,
iterations = NULL,
...) {
UseMethod("smoothness")
}
#' @export
smoothness.numeric <- function(x,
method = "cor",
lag = 1,
iterations = NULL,
...) {
if (lag < 1) {
lag <- round(lag * length(x))
}
if (lag <= 0) {
insight::format_error("'lag' cannot be that small.")
}
if (method == "cor") {
smooth <- stats::cor(utils::head(x, length(x) - lag), utils::tail(x, length(x) - lag))
} else {
smooth <- stats::sd(diff(x, lag = lag)) / abs(mean(diff(x, lag = lag)))
}
if (!is.null(iterations)) {
if (!requireNamespace("boot", quietly = TRUE)) {
insight::format_warning("Package 'boot' needed for bootstrapping SEs.")
} else {
results <- boot::boot(
data = x,
statistic = .boot_smoothness,
R = iterations,
method = method,
lag = lag
)
out_se <- stats::sd(results$t, na.rm = TRUE)
smooth <- data.frame(Smoothness = smooth, SE = out_se)
}
}
class(smooth) <- unique(c("parameters_smoothness", class(smooth)))
smooth
}
#' @export
smoothness.data.frame <- function(x,
method = "cor",
lag = 1,
iterations = NULL,
...) {
.smoothness <-
lapply(
x,
smoothness,
method = method,
lag = lag,
iterations = iterations
)
.smoothness <- cbind(Parameter = names(.smoothness), do.call(rbind, .smoothness))
class(.smoothness) <- unique(c("parameters_smoothness", class(.smoothness)))
.smoothness
}
#' @export
smoothness.default <- function(x,
method = "cor",
lag = 1,
iterations = NULL,
...) {
smoothness(
.factor_to_numeric(x),
method = method,
lag = lag,
iterations = iterations
)
}
# bootstrapping -----------------------------------
.boot_smoothness <- function(data, indices, method, lag) {
datawizard::smoothness(
x = data[indices],
method = method,
lag = lag,
iterations = NULL
)
}
# methods -----------------------------------------
#' @export
as.numeric.parameters_smoothness <- function(x, ...) {
if (is.data.frame(x)) {
x$Smoothness
} else {
as.vector(x)
}
}
#' @export
as.double.parameters_smoothness <- as.numeric.parameters_smoothness
|