1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_duplicated.R
\name{data_duplicated}
\alias{data_duplicated}
\title{Extract all duplicates}
\usage{
data_duplicated(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE
)
}
\arguments{
\item{data}{A data frame.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), or a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}),
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:} or \code{regex("")}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}.
\item or a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with("")},
\code{-is.numeric} or \code{-Sepal.Width:Petal.Length}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{find_columns(iris, select = c("Species", "Test"))} will just
return \code{"Species"}.}
\item{exclude}{See \code{select}, however, column names matched by the pattern
from \code{exclude} will be excluded instead of selected. If \code{NULL} (the default),
excludes no columns.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains("")} or \code{select = regex("")}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
\item{verbose}{Toggle warnings.}
}
\value{
A dataframe, containing all duplicates.
}
\description{
Extract all duplicates, for visual inspection.
Note that it also contains the first occurrence of future
duplicates, unlike \code{\link[=duplicated]{duplicated()}} or \code{\link[dplyr:distinct]{dplyr::distinct()}}). Also
contains an additional column reporting the number of missing
values for that row, to help in the decision-making when
selecting which duplicates to keep.
}
\examples{
df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
year = c(2022, 2022, 2022, 2022, 2000),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)
)
data_duplicated(df1, select = "id")
data_duplicated(df1, select = c("id", "year"))
# Filter to exclude duplicates
df2 <- df1[-c(1, 5), ]
df2
}
\seealso{
\code{\link[=data_unique]{data_unique()}}
}
\keyword{duplicates}
|