File: data_match.Rd

package info (click to toggle)
r-cran-datawizard 0.6.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,736 kB
  • sloc: sh: 13; makefile: 2
file content (126 lines) | stat: -rw-r--r-- 5,714 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_match.R
\name{data_match}
\alias{data_match}
\alias{data_filter}
\title{Return filtered or sliced data frame, or row indices}
\usage{
data_match(x, to, match = "and", return_indices = FALSE, drop_na = TRUE, ...)

data_filter(x, filter, ...)
}
\arguments{
\item{x}{A data frame.}

\item{to}{A data frame matching the specified conditions. Note that if
\code{match} is a value other than \code{"and"}, the original row order might be
changed. See 'Details'.}

\item{match}{String, indicating with which logical operation matching
conditions should be combined. Can be \code{"and"} (or \code{"&"}), \code{"or"} (or \code{"|"})
or \code{"not"} (or \code{"!"}).}

\item{return_indices}{Logical, if \code{FALSE}, return the vector of rows that
can be used to filter the original data frame. If \code{FALSE} (default),
returns directly the filtered data frame instead of the row indices.}

\item{drop_na}{Logical, if \code{TRUE}, missing values (\code{NA}s) are removed before
filtering the data. This is the default behaviour, however, sometimes when
row indices are requested (i.e. \code{return_indices=TRUE}), it might be useful
to preserve \code{NA} values, so returned row indices match the row indices of
the original data frame.}

\item{...}{Not used.}

\item{filter}{A logical expression indicating which rows to keep, or a numeric
vector indicating the row indices of rows to keep. Can also be a string
representation of a logical expression. e.g. \code{filter = "x > 4"}. This might
be useful when used in packages to avoid defining undefined global variables.}
}
\value{
A filtered data frame, or the row indices that match the specified configuration.
}
\description{
Return a filtered (or sliced) data frame or row indices of a data frame that
match a specific condition. \code{data_filter()} works like \code{data_match()}, but works
with logical expressions or row indices of a data frame to specify matching
conditions.
}
\details{
For \code{data_match()}, if \code{match} is either \code{"or"} or \code{"not"}, the
original row order from \code{x} might be changed. If preserving row order is
required, use \code{data_filter()} instead.

\if{html}{\out{<div class="sourceCode">}}\preformatted{# mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#>                    mpg vs am
#> Mazda RX4         21.0  0  1
#> Mazda RX4 Wag     21.0  0  1
#> Datsun 710        22.8  1  1
#> Hornet Sportabout 18.7  0  0
#> Duster 360        14.3  0  0
#> Merc 450SE        16.4  0  0

# re-sorting rows
head(data_match(mtcars[c("mpg", "vs", "am")],
                data.frame(vs = 0, am = 1),
                match = "or"))
#>                    mpg vs am
#> Mazda RX4         21.0  0  1
#> Mazda RX4 Wag     21.0  0  1
#> Hornet Sportabout 18.7  0  0
#> Duster 360        14.3  0  0
#> Merc 450SE        16.4  0  0
#> Merc 450SL        17.3  0  0
}\if{html}{\out{</div>}}

While \code{data_match()} works with data frames to match conditions against,
\code{data_filter()} is basically a wrapper around \verb{subset(subset = <filter>)}.
However, unlike \code{subset()}, it preserves label attributes and is useful when
working with labelled data.
}
\examples{
data_match(mtcars, data.frame(vs = 0, am = 1))
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))

# observations where "vs" is NOT 0 AND "am" is NOT 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
# equivalent to
data_filter(mtcars, vs != 0 & am != 1)

# observations where EITHER "vs" is 0 OR "am" is 1
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
# equivalent to
data_filter(mtcars, vs == 0 | am == 1)

# slice data frame by row indices
data_filter(mtcars, 5:10)

# Define a custom function containing data_filter() and pass variable names
# to it using curly brackets
my_filter <- function(data, variable) {
  data_filter(data, {variable} <= 20)
}
my_filter(mtcars, "mpg")

# Pass complete filter-condition as string
my_filter <- function(data, condition) {
  data_filter(data, {condition})
}
my_filter(mtcars, "am != 0")

# string can also be used directly as argument
data_filter(mtcars, "am != 0")
}
\seealso{
\itemize{
\item Functions to rename stuff: \code{\link[=data_rename]{data_rename()}}, \code{\link[=data_rename_rows]{data_rename_rows()}}, \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}}, \code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}}, \code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}}, \code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}}, \code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=data_find]{data_find()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}