1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_to_long.R
\name{data_to_long}
\alias{data_to_long}
\alias{reshape_longer}
\title{Reshape (pivot) data from wide to long}
\usage{
data_to_long(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to
)
reshape_longer(
data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to
)
}
\arguments{
\item{data}{A data frame to pivot.}
\item{select}{Variables that will be included when performing the required
tasks. Can be either
\itemize{
\item a variable specified as a literal variable name (e.g., \code{column_name}),
\item a string with the variable name (e.g., \code{"column_name"}), or a character
vector of variable names (e.g., \code{c("col1", "col2", "col3")}),
\item a formula with variable names (e.g., \code{~column_1 + column_2}),
\item a vector of positive integers, giving the positions counting from the left
(e.g. \code{1} or \code{c(1, 3, 5)}),
\item a vector of negative integers, giving the positions counting from the
right (e.g., \code{-1} or \code{-1:-3}),
\item one of the following select-helpers: \code{starts_with()}, \code{ends_with()},
\code{contains()}, a range using \code{:} or \code{regex("")}. \code{starts_with()},
\code{ends_with()}, and \code{contains()} accept several patterns, e.g
\code{starts_with("Sep", "Petal")}.
\item or a function testing for logical conditions, e.g. \code{is.numeric()} (or
\code{is.numeric}), or any user-defined function that selects the variables
for which the function returns \code{TRUE} (like: \code{foo <- function(x) mean(x) > 3}),
\item ranges specified via literal variable names, select-helpers (except
\code{regex()}) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a \code{-}, e.g. \code{-ends_with("")},
\code{-is.numeric} or \code{-Sepal.Width:Petal.Length}. \strong{Note:} Negation means
that matches are \emph{excluded}, and thus, the \code{exclude} argument can be
used alternatively. For instance, \code{select=-ends_with("Length")} (with
\code{-}) is equivalent to \code{exclude=ends_with("Length")} (no \code{-}). In case
negation should not work as expected, use the \code{exclude} argument instead.
}
If \code{NULL}, selects all columns. Patterns that found no matches are silently
ignored, e.g. \code{find_columns(iris, select = c("Species", "Test"))} will just
return \code{"Species"}.}
\item{names_to}{The name of the new column that will contain the column
names.}
\item{names_prefix}{A regular expression used to remove matching text from
the start of each variable name.}
\item{names_sep, names_pattern}{If \code{names_to} contains multiple values, this
argument controls how the column name is broken up.
\code{names_pattern} takes a regular expression containing matching groups, i.e. "()".}
\item{values_to}{The name of the new column that will contain the values of
the pivoted variables.}
\item{values_drop_na}{If \code{TRUE}, will drop rows that contain only \code{NA} in the
\code{values_to} column. This effectively converts explicit missing values to
implicit missing values, and should generally be used only when missing values
in data were created by its structure.}
\item{rows_to}{The name of the column that will contain the row names or row
numbers from the original data. If \code{NULL}, will be removed.}
\item{ignore_case}{Logical, if \code{TRUE} and when one of the select-helpers or
a regular expression is used in \code{select}, ignores lower/upper case in the
search pattern when matching against variable names.}
\item{regex}{Logical, if \code{TRUE}, the search pattern from \code{select} will be
treated as regular expression. When \code{regex = TRUE}, select \emph{must} be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. \code{regex = TRUE} is comparable to using one of the two
select-helpers, \code{select = contains("")} or \code{select = regex("")}, however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.}
\item{...}{Currently not used.}
\item{cols}{Identical to \code{select}. This argument is here to ensure compatibility
with \code{tidyr::pivot_longer()}. If both \code{select} and \code{cols} are provided, \code{cols}
is used.}
\item{colnames_to}{Deprecated. Use \code{names_to} instead.}
}
\value{
If a tibble was provided as input, \code{reshape_longer()} also returns a
tibble. Otherwise, it returns a data frame.
}
\description{
This function "lengthens" data, increasing the number of rows and decreasing
the number of columns. This is a dependency-free base-R equivalent of
\code{tidyr::pivot_longer()}.
}
\examples{
\dontshow{if (requireNamespace("psych") && requireNamespace("tidyr")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
wide_data <- data.frame(replicate(5, rnorm(10)))
# Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:5))
data_to_long(wide_data)
# Customizing the names
data_to_long(wide_data,
select = c(1, 2),
names_to = "Column",
values_to = "Numbers",
rows_to = "Row"
)
# Full example
# ------------------
data <- psych::bfi # Wide format with one row per participant's personality test
# Pivot long format
data_to_long(data,
select = regex("\\\\d"), # Select all columns that contain a digit
names_to = "Item",
values_to = "Score",
rows_to = "Participant"
)
reshape_longer(
tidyr::who,
select = new_sp_m014:newrel_f65,
names_to = c("diagnosis", "gender", "age"),
names_pattern = "new_?(.*)_(.)(.*)",
values_to = "count"
)
\dontshow{\}) # examplesIf}
}
\seealso{
\itemize{
\item Functions to rename stuff: \code{\link[=data_rename]{data_rename()}}, \code{\link[=data_rename_rows]{data_rename_rows()}}, \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}}, \code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}}, \code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}}, \code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}}, \code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=data_find]{data_find()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}
|