File: data_to_wide.Rd

package info (click to toggle)
r-cran-datawizard 0.6.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,736 kB
  • sloc: sh: 13; makefile: 2
file content (148 lines) | stat: -rw-r--r-- 5,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_to_wide.R
\name{data_to_wide}
\alias{data_to_wide}
\alias{reshape_wider}
\title{Reshape (pivot) data from long to wide}
\usage{
data_to_wide(
  data,
  id_cols = NULL,
  values_from = "Value",
  names_from = "Name",
  names_sep = "_",
  names_prefix = "",
  names_glue = NULL,
  values_fill = NULL,
  verbose = TRUE,
  ...,
  colnames_from,
  rows_from,
  sep
)

reshape_wider(
  data,
  id_cols = NULL,
  values_from = "Value",
  names_from = "Name",
  names_sep = "_",
  names_prefix = "",
  names_glue = NULL,
  values_fill = NULL,
  verbose = TRUE,
  ...,
  colnames_from,
  rows_from,
  sep
)
}
\arguments{
\item{data}{A data frame to pivot.}

\item{id_cols}{The name of the column that identifies the rows. If \code{NULL},
it will use all the unique rows.}

\item{values_from}{The name of the column that contains the values to be used
as future variable values.}

\item{names_from}{The name of the column that contains the levels to be
used as future column names.}

\item{names_sep}{If \code{names_from} or \code{values_from} contains multiple variables,
this will be used to join their values together into a single string to use
as a column name.}

\item{names_prefix}{String added to the start of every variable name. This is
particularly useful if \code{names_from} is a numeric vector and you want to create
syntactic variable names.}

\item{names_glue}{Instead of \code{names_sep} and \code{names_prefix}, you can supply a
\href{https://glue.tidyverse.org/index.html}{glue specification} that uses the
\code{names_from} columns to create custom column names. Note that the only
delimiters supported by \code{names_glue} are curly brackets, \verb{\{} and \verb{\}}.}

\item{values_fill}{Optionally, a (scalar) value that will be used to replace
missing values in the new columns created.}

\item{verbose}{Toggle warnings.}

\item{...}{Not used for now.}

\item{colnames_from}{Deprecated. Use \code{names_from} instead.}

\item{rows_from}{Deprecated. Use \code{id_cols} instead.}

\item{sep}{Deprecated. Use \code{names_sep} instead.}
}
\value{
If a tibble was provided as input, \code{reshape_wider()} also returns a
tibble. Otherwise, it returns a data frame.
}
\description{
This function "widens" data, increasing the number of columns and decreasing
the number of rows. This is a dependency-free base-R equivalent of
\code{tidyr::pivot_wider()}.
}
\examples{
data_long <- read.table(header = TRUE, text = "
 subject sex condition measurement
       1   M   control         7.9
       1   M     cond1        12.3
       1   M     cond2        10.7
       2   F   control         6.3
       2   F     cond1        10.6
       2   F     cond2        11.1
       3   F   control         9.5
       3   F     cond1        13.1
       3   F     cond2        13.8
       4   M   control        11.5
       4   M     cond1        13.4
       4   M     cond2        12.9")


reshape_wider(
  data_long,
  id_cols = "subject",
  names_from = "condition",
  values_from = "measurement"
)

reshape_wider(
  data_long,
  id_cols = "subject",
  names_from = "condition",
  values_from = "measurement",
  names_prefix = "Var.",
  names_sep = "."
)

production <- expand.grid(
  product = c("A", "B"),
  country = c("AI", "EI"),
  year = 2000:2014
)
production <- data_filter(production, (product == "A" & country == "AI") | product == "B")

production$production <- rnorm(nrow(production))

reshape_wider(
  production,
  names_from = c("product", "country"),
  values_from = "production",
  names_glue = "prod_{product}_{country}"
)

}
\seealso{
\itemize{
\item Functions to rename stuff: \code{\link[=data_rename]{data_rename()}}, \code{\link[=data_rename_rows]{data_rename_rows()}}, \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}}, \code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}}, \code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}}, \code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}}, \code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=data_find]{data_find()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}