1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/data_to_wide.R
\name{data_to_wide}
\alias{data_to_wide}
\alias{reshape_wider}
\title{Reshape (pivot) data from long to wide}
\usage{
data_to_wide(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
verbose = TRUE,
...,
colnames_from,
rows_from,
sep
)
reshape_wider(
data,
id_cols = NULL,
values_from = "Value",
names_from = "Name",
names_sep = "_",
names_prefix = "",
names_glue = NULL,
values_fill = NULL,
verbose = TRUE,
...,
colnames_from,
rows_from,
sep
)
}
\arguments{
\item{data}{A data frame to pivot.}
\item{id_cols}{The name of the column that identifies the rows. If \code{NULL},
it will use all the unique rows.}
\item{values_from}{The name of the column that contains the values to be used
as future variable values.}
\item{names_from}{The name of the column that contains the levels to be
used as future column names.}
\item{names_sep}{If \code{names_from} or \code{values_from} contains multiple variables,
this will be used to join their values together into a single string to use
as a column name.}
\item{names_prefix}{String added to the start of every variable name. This is
particularly useful if \code{names_from} is a numeric vector and you want to create
syntactic variable names.}
\item{names_glue}{Instead of \code{names_sep} and \code{names_prefix}, you can supply a
\href{https://glue.tidyverse.org/index.html}{glue specification} that uses the
\code{names_from} columns to create custom column names. Note that the only
delimiters supported by \code{names_glue} are curly brackets, \verb{\{} and \verb{\}}.}
\item{values_fill}{Optionally, a (scalar) value that will be used to replace
missing values in the new columns created.}
\item{verbose}{Toggle warnings.}
\item{...}{Not used for now.}
\item{colnames_from}{Deprecated. Use \code{names_from} instead.}
\item{rows_from}{Deprecated. Use \code{id_cols} instead.}
\item{sep}{Deprecated. Use \code{names_sep} instead.}
}
\value{
If a tibble was provided as input, \code{reshape_wider()} also returns a
tibble. Otherwise, it returns a data frame.
}
\description{
This function "widens" data, increasing the number of columns and decreasing
the number of rows. This is a dependency-free base-R equivalent of
\code{tidyr::pivot_wider()}.
}
\examples{
data_long <- read.table(header = TRUE, text = "
subject sex condition measurement
1 M control 7.9
1 M cond1 12.3
1 M cond2 10.7
2 F control 6.3
2 F cond1 10.6
2 F cond2 11.1
3 F control 9.5
3 F cond1 13.1
3 F cond2 13.8
4 M control 11.5
4 M cond1 13.4
4 M cond2 12.9")
reshape_wider(
data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement"
)
reshape_wider(
data_long,
id_cols = "subject",
names_from = "condition",
values_from = "measurement",
names_prefix = "Var.",
names_sep = "."
)
production <- expand.grid(
product = c("A", "B"),
country = c("AI", "EI"),
year = 2000:2014
)
production <- data_filter(production, (product == "A" & country == "AI") | product == "B")
production$production <- rnorm(nrow(production))
reshape_wider(
production,
names_from = c("product", "country"),
values_from = "production",
names_glue = "prod_{product}_{country}"
)
}
\seealso{
\itemize{
\item Functions to rename stuff: \code{\link[=data_rename]{data_rename()}}, \code{\link[=data_rename_rows]{data_rename_rows()}}, \code{\link[=data_addprefix]{data_addprefix()}}, \code{\link[=data_addsuffix]{data_addsuffix()}}
\item Functions to reorder or remove columns: \code{\link[=data_reorder]{data_reorder()}}, \code{\link[=data_relocate]{data_relocate()}}, \code{\link[=data_remove]{data_remove()}}
\item Functions to reshape, pivot or rotate data frames: \code{\link[=data_to_long]{data_to_long()}}, \code{\link[=data_to_wide]{data_to_wide()}}, \code{\link[=data_rotate]{data_rotate()}}
\item Functions to recode data: \code{\link[=rescale]{rescale()}}, \code{\link[=reverse]{reverse()}}, \code{\link[=categorize]{categorize()}}, \code{\link[=recode_values]{recode_values()}}, \code{\link[=slide]{slide()}}
\item Functions to standardize, normalize, rank-transform: \code{\link[=center]{center()}}, \code{\link[=standardize]{standardize()}}, \code{\link[=normalize]{normalize()}}, \code{\link[=ranktransform]{ranktransform()}}, \code{\link[=winsorize]{winsorize()}}
\item Split and merge data frames: \code{\link[=data_partition]{data_partition()}}, \code{\link[=data_merge]{data_merge()}}
\item Functions to find or select columns: \code{\link[=data_select]{data_select()}}, \code{\link[=data_find]{data_find()}}
\item Functions to filter rows: \code{\link[=data_match]{data_match()}}, \code{\link[=data_filter]{data_filter()}}
}
}
|