1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
---
title: "Data Standardization"
output:
rmarkdown::html_vignette:
toc: true
fig_width: 10.08
fig_height: 6
vignette: >
\usepackage[utf8]{inputenc}
%\VignetteIndexEntry{Data Standardization}
%\VignetteEngine{knitr::rmarkdown}
---
```{r message=FALSE, warning=FALSE, include=FALSE}
options(knitr.kable.NA = "")
knitr::opts_chunk$set(
comment = "#>",
message = FALSE,
warning = FALSE,
dpi = 300
)
pkgs <- c(
"datawizard",
"poorman",
"see",
"ggplot2",
"parameters",
"lme4"
)
if (!all(sapply(pkgs, requireNamespace, quietly = TRUE))) {
knitr::opts_chunk$set(eval = FALSE)
}
```
This vignette can be referred to by citing the following:
> Patil et al., (2022). datawizard: An R Package for Easy Data Preparation and Statistical Transformations. *Journal of Open Source Software*, *7*(78), 4684, https://doi.org/10.21105/joss.04684
# Introduction
To make sense of their data and effects, scientists might want to standardize
(Z-score) their variables. This makes the data unitless, expressed only in terms
of deviation from an index of centrality (e.g., the mean or the median).
However, aside from some benefits, standardization also comes with challenges
and issues, that the scientist should be aware of.
## Methods of Standardization
The `datawizard` package offers two methods of standardization via the
`standardize()` function:
- **Normal standardization**: center around the *mean*, with *SD* units
(default).
- **Robust standardization**: center around the *median*, with *MAD* (median
absolute deviation) units (`robust = TRUE`).
Let's look at the following example:
```{r}
library(datawizard)
library(effectsize) # for data
# let's have a look at what the data look like
data("hardlyworking", package = "effectsize")
head(hardlyworking)
# let's use both methods of standardization
hardlyworking$xtra_hours_z <- standardize(hardlyworking$xtra_hours)
hardlyworking$xtra_hours_zr <- standardize(hardlyworking$xtra_hours, robust = TRUE)
```
We can see that different methods give different central and variation values:
```{r, eval=FALSE}
library(dplyr)
hardlyworking %>%
select(starts_with("xtra_hours")) %>%
data_to_long() %>%
group_by(Name) %>%
summarise(
mean = mean(Value),
sd = sd(Value),
median = median(Value),
mad = mad(Value)
)
```
```{r, echo=FALSE}
library(poorman)
hardlyworking %>%
select(starts_with("xtra_hours")) %>%
reshape_longer(names_to = "name", values_to = "value") %>%
group_by(name) %>%
summarise(
mean = mean(value),
sd = sd(value),
median = median(value),
mad = mad(value)
) %>%
knitr::kable(digits = 4)
```
`standardize()` can also be used to standardize a full data frame - where each
numeric variable is standardized separately:
```{r}
hardlyworking_z <- standardize(hardlyworking)
```
```{r, eval=FALSE}
hardlyworking_z %>%
select(-xtra_hours_z, -xtra_hours_zr) %>%
data_to_long() %>%
group_by(Name) %>%
summarise(
mean = mean(Value),
sd = sd(Value),
median = median(Value),
mad = mad(Value)
)
```
```{r, echo=FALSE}
hardlyworking_z %>%
select(-xtra_hours_z, -xtra_hours_zr) %>%
reshape_longer(names_to = "name", values_to = "value") %>%
group_by(name) %>%
summarise(
mean = mean(value),
sd = sd(value),
median = median(value),
mad = mad(value)
) %>%
knitr::kable(digits = 4)
```
Weighted standardization is also supported via the `weights` argument, and
factors can also be standardized (if you're into that kind of thing) by setting
`force = TRUE`, which converts factors to treatment-coded dummy variables before
standardizing.
## Variable-wise *vs.* Participant-wise
Standardization is an important step and extra caution is required in
**repeated-measures designs**, in which there are three ways of standardizing
data:
- **Variable-wise**: The most common method. A simple scaling of each column.
- **Participant-wise**: Variables are standardized "within" each participant,
*i.e.*, for each participant, by the participant's mean and SD.
- **Full**: Participant-wise first and then re-standardizing variable-wise.
Unfortunately, the method used is often not explicitly stated. This is an issue
as these methods can generate important discrepancies (that can in turn
contribute to the reproducibility crisis). Let's investigate these 3 methods.
### The Data
We will take the `emotion` dataset in which participants were exposed to
negative pictures and had to rate their emotions (**valence**) and the amount of
memories associated with the picture (**autobiographical link**). One could make
the hypothesis that for young participants with no context of war or violence,
the most negative pictures (mutilations) are less related to memories than less
negative pictures (involving for example car crashes or sick people). In other
words, **we expect a positive relationship between valence** (with high values
corresponding to less negativity) **and autobiographical link**.
Let's have a look at the data, averaged by participants:
```{r, eval=FALSE}
# Download the 'emotion' dataset
load(url("https://raw.githubusercontent.com/neuropsychology/psycho.R/master/data/emotion.rda"))
# Discard neutral pictures (keep only negative)
emotion <- emotion %>% filter(Emotion_Condition == "Negative")
# Summary
emotion %>%
drop_na(Subjective_Valence, Autobiographical_Link) %>%
group_by(Participant_ID) %>%
summarise(
n_Trials = n(),
Valence_Mean = mean(Subjective_Valence),
Valence_SD = sd(Subjective_Valence)
)
```
```{r, echo=FALSE}
load(url("https://raw.githubusercontent.com/neuropsychology/psycho.R/master/data/emotion.rda"))
# Discard neutral pictures (keep only negative)
emotion <- emotion %>% filter(Emotion_Condition == "Negative")
# Summary
emotion %>%
subset(!(is.na(Subjective_Valence) | is.na(Autobiographical_Link))) %>%
group_by(Participant_ID) %>%
summarise(
n_Trials = n(),
Valence_Mean = mean(Subjective_Valence),
Valence_SD = sd(Subjective_Valence)
)
```
As we can see from the means and SDs, there is a lot of variability **between**
participants both in their means and their individual *within*-participant SD.
### Effect of Standardization
We will create three data frames standardized with each of the three
techniques.
```{r, warning=FALSE}
Z_VariableWise <- emotion %>%
standardize()
Z_ParticipantWise <- emotion %>%
group_by(Participant_ID) %>%
standardize()
Z_Full <- emotion %>%
group_by(Participant_ID) %>%
standardize() %>%
ungroup() %>%
standardize()
```
Let's see how these three standardization techniques affected the **Valence**
variable.
### Across Participants
We can calculate the mean and SD of *Valence* across all participants:
```{r, eval=FALSE}
# Create a convenient function to print
summarise_Subjective_Valence <- function(data) {
df_name <- deparse(substitute(data))
data %>%
ungroup() %>%
summarise(
DF = df_name,
Mean = mean(Subjective_Valence),
SD = sd(Subjective_Valence)
)
}
# Check the results
rbind(
summarise_Subjective_Valence(Z_VariableWise),
summarise_Subjective_Valence(Z_ParticipantWise),
summarise_Subjective_Valence(Z_Full)
)
```
```{r, echo=FALSE}
# Create a convenient function to print
summarise_Subjective_Valence <- function(data) {
df_name <- deparse(substitute(data))
data <- data %>%
ungroup() %>%
summarise(
Mean = mean(Subjective_Valence),
SD = sd(Subjective_Valence)
)
cbind(DF = df_name, data)
}
# Check the results
rbind(
summarise_Subjective_Valence(Z_VariableWise),
summarise_Subjective_Valence(Z_ParticipantWise),
summarise_Subjective_Valence(Z_Full)
) %>%
knitr::kable(digits = 2)
```
The **means** and the **SD** appear as fairly similar (0 and 1)...
```{r, fig.width=7, fig.height=4.5, results='markup', fig.align='center'}
library(see)
library(ggplot2)
ggplot() +
geom_density(aes(Z_VariableWise$Subjective_Valence,
color = "Z_VariableWise"
), linewidth = 1) +
geom_density(aes(Z_ParticipantWise$Subjective_Valence,
color = "Z_ParticipantWise"
), linewidth = 1) +
geom_density(aes(Z_Full$Subjective_Valence,
color = "Z_Full"
), linewidth = 1) +
see::theme_modern() +
labs(color = "")
```
and so do the marginal distributions...
### At the Participant Level
However, we can also look at what happens in the participant level. Let's look at
the first 5 participants:
```{r, eval=FALSE}
# Create convenient function
print_participants <- function(data) {
df_name <- deparse(substitute(data))
data %>%
group_by(Participant_ID) %>%
summarise(
DF = df_name,
Mean = mean(Subjective_Valence),
SD = sd(Subjective_Valence)
) %>%
head(5) %>%
select(DF, everything())
}
# Check the results
rbind(
print_participants(Z_VariableWise),
print_participants(Z_ParticipantWise),
print_participants(Z_Full)
)
```
```{r, echo=FALSE}
# Create convenient function
print_participants <- function(data) {
df_name <- deparse(substitute(data))
data %>%
group_by(Participant_ID) %>%
summarise(
Mean = mean(Subjective_Valence),
SD = sd(Subjective_Valence)
) %>%
cbind(DF = df_name, .) %>%
head(5) %>%
select(DF, everything())
}
# Check the results
rbind(
print_participants(Z_VariableWise),
print_participants(Z_ParticipantWise),
print_participants(Z_Full)
) %>%
knitr::kable(digits = 2)
```
Seems like *full* and *participant-wise* standardization give similar results,
but different ones than *variable-wise* standardization.
### Compare
Let's do a **correlation** between the **variable-wise and participant-wise
methods**.
```{r, fig.width=7, fig.height=4.5, results='markup', fig.align='center'}
r <- cor.test(
Z_VariableWise$Subjective_Valence,
Z_ParticipantWise$Subjective_Valence
)
data.frame(
Original = emotion$Subjective_Valence,
VariableWise = Z_VariableWise$Subjective_Valence,
ParticipantWise = Z_ParticipantWise$Subjective_Valence
) %>%
ggplot(aes(x = VariableWise, y = ParticipantWise, colour = Original)) +
geom_point(alpha = 0.75, shape = 16) +
geom_smooth(method = "lm", color = "black") +
scale_color_distiller(palette = 1) +
ggtitle(paste0("r = ", round(r$estimate, 2))) +
see::theme_modern()
```
While the three standardization methods roughly present the same characteristics
at a general level (mean 0 and SD 1) and a similar distribution, their values
are not exactly the same!
Let's now answer the original question by investigating the **linear relationship between valence and autobiographical link**. We can do this by
running a mixed-effects model with participants entered as random effects.
```{r}
library(lme4)
m_raw <- lmer(
formula = Subjective_Valence ~ Autobiographical_Link + (1 | Participant_ID),
data = emotion
)
m_VariableWise <- update(m_raw, data = Z_VariableWise)
m_ParticipantWise <- update(m_raw, data = Z_ParticipantWise)
m_Full <- update(m_raw, data = Z_Full)
```
We can extract the parameters of interest from each model, and find:
```{r}
# Convenient function
get_par <- function(model) {
mod_name <- deparse(substitute(model))
parameters::model_parameters(model) %>%
mutate(Model = mod_name) %>%
select(-Parameter) %>%
select(Model, everything()) %>%
.[-1, ]
}
# Run the model on all datasets
rbind(
get_par(m_raw),
get_par(m_VariableWise),
get_par(m_ParticipantWise),
get_par(m_Full)
)
```
As we can see, **variable-wise** standardization only affects **the coefficient** (which is expected, as it changes the unit), but not the test
statistic or statistical significance. However, using **participant-wise**
standardization *does* affect the coefficient **and** the significance.
**No method is better or more justified, and the choice depends on the specific case, context, data and goal.**
### Conclusion
1. **Standardization can be useful in *some* cases and should be justified**.
2. **Variable and Participant-wise standardization methods *appear* to produce similar data**.
3. **Variable and Participant-wise standardization can lead to different results**.
4. **The chosen method can strongly influence the results and should therefore be explicitly stated and justified to enhance reproducibility of results**.
We showed here yet another way of **sneakily tweaking the data** that can change
the results. To prevent its use as a bad practice, we can only highlight the
importance of open data, open analysis/scripts, and preregistration.
# See also
- `datawizard::demean()`: <https://easystats.github.io/datawizard/reference/demean.html>
- `standardize_parameters(method = "pseudo")` for mixed-effects models
<https://easystats.github.io/parameters/articles/standardize_parameters_effsize.html>
# References
|