1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
---
title: "Coming from 'tidyverse'"
output:
rmarkdown::html_vignette:
toc: true
vignette: >
\usepackage[utf8]{inputenc}
%\VignetteIndexEntry{Coming from 'tidyverse'}
%\VignetteEngine{knitr::rmarkdown}
---
```{r message=FALSE, warning=FALSE, include=FALSE, eval = TRUE}
library(knitr)
options(knitr.kable.NA = "")
knitr::opts_chunk$set(
eval = FALSE,
message = FALSE,
warning = FALSE,
dpi = 300
)
pkgs <- c(
"dplyr",
"datawizard",
"tidyr"
)
# since we explicitely put eval = TRUE for some chunks, we can't rely on
# knitr::opts_chunk$set(eval = FALSE) at the beginning of the script. So we make
# a logical that is FALSE only if deps are not installed (cf easystats/easystats#317)
evaluate_chunk <- TRUE
if (!all(sapply(pkgs, requireNamespace, quietly = TRUE))) {
evaluate_chunk <- FALSE
}
```
This vignette can be referred to by citing the following:
Patil et al., (2022). datawizard: An R Package for Easy Data Preparation and Statistical Transformations. *Journal of Open Source Software*, *7*(78), 4684, https://doi.org/10.21105/joss.04684
```{css, echo=FALSE, eval = evaluate_chunk}
.datawizard, .datawizard > .sourceCode {
background-color: #e6e6ff;
}
.tidyverse, .tidyverse > .sourceCode {
background-color: #d9f2e5;
}
```
# Introduction
`{datawizard}` package aims to make basic data wrangling easier than
with base R. The data wrangling workflow it supports is similar to the one
supported by the tidyverse package combination of `{dplyr}` and `{tidyr}`. However,
one of its main features is that it has a very few dependencies: `{stats}` and `{utils}`
(included in base R) and `{insight}`, which is the core package of the _easystats_
ecosystem. This package grew organically to simultaneously satisfy the
"0 non-base hard dependency" principle of _easystats_ and the data wrangling needs
of the constituent packages in this ecosystem.
One drawback of this genesis is that not all features of the `{tidyverse}`
packages are supported since only features that were necessary for _easystats_
ecosystem have been implemented. Some of these missing features (such as `summarize`
or the pipe operator `%>%`) are made available in other dependency-free packages,
such as [`{poorman}`](https://github.com/nathaneastwood/poorman/). It is also
important to note that `{datawizard}` was designed to avoid namespace collisions
with `{tidyverse}` packages.
In this article, we will see how to go through basic data wrangling steps with
`{datawizard}`. We will also compare it to the `{tidyverse}` syntax for achieving the same.
This way, if you decide to make the switch, you can easily find the translations here.
This vignette is largely inspired from `{dplyr}`'s [Getting started vignette](https://dplyr.tidyverse.org/articles/dplyr.html).
```{r, eval = evaluate_chunk}
library(dplyr)
library(tidyr)
library(datawizard)
```
# Workhorses
Before we look at their *tidyverse* equivalents, we can first have a look at
`{datawizard}`'s key functions for data wrangling:
| Function | Operation |
| :---------------- | :------------------------------------------------ |
| `data_filter()` | [to select only certain observations](#filtering) |
| `data_select()` | [to select only a few variables](#selecting) |
| `data_arrange()` | [to sort observations](#sorting) |
| `data_extract()` | [to extract a single variable](#extracting) |
| `data_rename()` | [to rename variables](#renaming) |
| `data_relocate()` | [to reorder a data frame](#relocating) |
| `data_to_long()` | [to convert data from wide to long](#reshaping) |
| `data_to_wide()` | [to convert data from long to wide](#reshaping) |
| `data_join()` | [to join two data frames](#joining) |
Note that there are a few functions in `{datawizard}` that have no strict equivalent
in `{dplyr}` or `{tidyr}` (e.g `data_rotate()`), and so we won't discuss them in
the next section.
# Equivalence with `{dplyr}` / `{tidyr}`
Before we look at them individually, let's first have a look at the summary table of this equivalence.
| Function | Tidyverse equivalent(s) |
| :---------------- | :------------------------------------------------------------------ |
| `data_filter()` | `dplyr::filter()`, `dplyr::slice()` |
| `data_select()` | `dplyr::select()` |
| `data_arrange()` | `dplyr::arrange()` |
| `data_extract()` | `dplyr::pull()` |
| `data_rename()` | `dplyr::rename()` |
| `data_relocate()` | `dplyr::relocate()` |
| `data_to_long()` | `tidyr::pivot_longer()` |
| `data_to_wide()` | `tidyr::pivot_wider()` |
| `data_join()` | `dplyr::inner_join()`, `dplyr::left_join()`, `dplyr::right_join()`, |
| | `dplyr::full_join()`, `dplyr::anti_join()`, `dplyr::semi_join()` |
| `data_peek()` | `dplyr::glimpse()` |
## Filtering {#filtering}
`data_filter()` is a wrapper around `subset()`. Therefore, if you want to have
several filtering conditions, you need to use `&`. Separating the conditions
with a comma (as in `dplyr::filter()`) will **not** work; it will only apply the
first condition.
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r filter, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_filter(skin_color == "light" &
eye_color == "brown")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
filter(
skin_color == "light",
eye_color == "brown"
)
```
:::
::::
```{r filter, eval = evaluate_chunk, echo = FALSE}
```
<!-- Shorten output to make it easier to read: -->
```{r, echo = FALSE, eval = evaluate_chunk}
starwars <- head(starwars)
```
## Selecting {#selecting}
`data_select()` is the equivalent of `dplyr::select()`.
The main difference between these two functions is that `data_select()` uses two
arguments (`select` and `exclude`) and requires quoted column names if we want to
select several variables, while `dplyr::select()` accepts any unquoted column names.
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r select1, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_select(select = c("hair_color", "skin_color", "eye_color"))
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
select(hair_color, skin_color, eye_color)
```
:::
::::
```{r select1, eval = evaluate_chunk, echo = FALSE}
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r select2, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_select(select = -ends_with("color"))
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
select(-ends_with("color"))
```
:::
::::
```{r select2, eval = evaluate_chunk, echo = FALSE}
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
<!-- TODO: Although we say the column names need to be quoted, they are unquoted
here and quoting them won't work. Should we comment on that? -->
```{r select3, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_select(select = -hair_color:eye_color)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
select(!(hair_color:eye_color))
```
:::
::::
```{r select3, eval = evaluate_chunk, echo = FALSE}
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r select4, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_select(exclude = regex("color$"))
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
select(-contains("color$"))
```
:::
::::
```{r select4, eval = evaluate_chunk, echo = FALSE}
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r select5, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_select(select = is.numeric)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
select(where(is.numeric))
```
:::
::::
```{r select5, eval = evaluate_chunk, echo = FALSE}
```
You can find a list of all the select helpers with `?data_select`.
## Sorting {#sorting}
`data_arrange()` is the equivalent of `dplyr::arrange()`. It takes two arguments:
a data frame, and a vector of column names used to sort the rows. Note that contrary
to most other functions in `{datawizard}`, it is not possible to use select helpers
such as `starts_with()` in `data_arrange()`.
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
:::{}
```{r arrange1, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_arrange(c("hair_color", "height"))
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
arrange(hair_color, height)
```
:::
::::
```{r arrange1, eval = evaluate_chunk, echo = FALSE}
```
You can also sort variables in descending order by putting a `"-"` in front of
their name, like below:
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
:::{}
```{r arrange2, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_arrange(c("-hair_color", "-height"))
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
arrange(desc(hair_color), -height)
```
:::
::::
```{r arrange2, eval = evaluate_chunk, echo = FALSE}
```
## Extracting {#extracting}
Although we mostly work on data frames, it is sometimes useful to extract a single
column as a vector. This can be done with `data_extract()`, which reproduces the
behavior of `dplyr::pull()`:
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
:::{}
```{r extract1, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_extract(gender)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
pull(gender)
```
:::
::::
```{r extract1, eval = evaluate_chunk, echo = FALSE}
```
We can also specify several variables in `select`. In this case, `data_extract()`
is equivalent to `data_select()`:
```{r eval = evaluate_chunk}
starwars %>%
data_extract(select = contains("color"))
```
## Renaming {#renaming}
`data_rename()` is the equivalent of `dplyr::rename()` but the syntax between the
two is different. While `dplyr::rename()` takes new-old pairs of column
names, `data_rename()` requires a vector of column names to rename, and then
a vector of new names for these columns that must be of the same length.
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r rename1, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_rename(
pattern = c("sex", "hair_color"),
replacement = c("Sex", "Hair Color")
)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
rename(
Sex = sex,
"Hair Color" = hair_color
)
```
:::
::::
```{r rename1, eval = evaluate_chunk, echo = FALSE}
```
The way `data_rename()` is designed makes it easy to apply the same modifications
to a vector of column names. For example, we can remove underscores and use
TitleCase with the following code:
```{r rename2}
to_rename <- names(starwars)
starwars %>%
data_rename(
pattern = to_rename,
replacement = tools::toTitleCase(gsub("_", " ", to_rename))
)
```
```{r rename2, eval = evaluate_chunk, echo = FALSE}
```
It is also possible to add a prefix or a suffix to all or a subset of variables
with `data_addprefix()` and `data_addsuffix()`. The argument `select` accepts
all select helpers that we saw above with `data_select()`:
```{r rename3}
starwars %>%
data_addprefix(
pattern = "OLD.",
select = contains("color")
) %>%
data_addsuffix(
pattern = ".NEW",
select = -contains("color")
)
```
```{r rename3, eval = evaluate_chunk, echo = FALSE}
```
## Relocating {#relocating}
Sometimes, we want to relocate one or a small subset of columns in the dataset.
Rather than typing many names in `data_select()`, we can use `data_relocate()`,
which is the equivalent of `dplyr::relocate()`. Just like `data_select()`, we can
specify a list of variables we want to relocate with `select` and `exclude`.
Then, the arguments `before` and `after`^[Note that we use `before` and `after`
whereas `dplyr::relocate()` uses `.before` and `.after`.] specify where the selected columns should
be relocated:
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r relocate1, class.source = "datawizard"}
# ---------- datawizard -----------
starwars %>%
data_relocate(sex:homeworld, before = "height")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
starwars %>%
relocate(sex:homeworld, .before = height)
```
:::
::::
```{r relocate1, eval = evaluate_chunk, echo = FALSE}
```
In addition to column names, `before` and `after` accept column indices. Finally,
one can use `before = -1` to relocate the selected columns just before the last
column, or `after = -1` to relocate them after the last column.
```{r eval = evaluate_chunk}
# ---------- datawizard -----------
starwars %>%
data_relocate(sex:homeworld, after = -1)
```
## Reshaping {#reshaping}
### Longer
Reshaping data from wide to long or from long to wide format can be done with
`data_to_long()` and `data_to_wide()`. These functions were designed to match
`tidyr::pivot_longer()` and `tidyr::pivot_wider()` arguments, so that the only
thing to do is to change the function name. However, not all of
`tidyr::pivot_longer()` and `tidyr::pivot_wider()` features are available yet.
We will use the `relig_income` dataset, as in the [`{tidyr}` vignette](https://tidyr.tidyverse.org/articles/pivot.html).
```{r eval = evaluate_chunk}
relig_income
```
We would like to reshape this dataset to have 3 columns: religion, count, and
income. The column "religion" doesn't need to change, so we exclude it with
`-religion`. Then, each remaining column corresponds to an income category.
Therefore, we want to move all these column names to a single column called
"income". Finally, the values corresponding to each of these columns will be
reshaped to be in a single new column, called "count".
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r pivot1, class.source = "datawizard"}
# ---------- datawizard -----------
relig_income %>%
data_to_long(
-religion,
names_to = "income",
values_to = "count"
)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
relig_income %>%
pivot_longer(
!religion,
names_to = "income",
values_to = "count"
)
```
:::
::::
```{r pivot1, eval = evaluate_chunk, echo = FALSE}
```
To explore a bit more the arguments of `data_to_long()`, we will use another
dataset: the `billboard` dataset.
```{r eval = evaluate_chunk}
billboard
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r pivot2, class.source = "datawizard"}
# ---------- datawizard -----------
billboard %>%
data_to_long(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
billboard %>%
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
)
```
:::
::::
```{r pivot2, eval = evaluate_chunk, echo = FALSE}
```
### Wider
Once again, we use an example in the `{tidyr}` vignette to show how close `data_to_wide()`
and `pivot_wider()` are:
```{r eval = evaluate_chunk}
fish_encounters
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r pivot3, class.source = "datawizard"}
# ---------- datawizard -----------
fish_encounters %>%
data_to_wide(
names_from = "station",
values_from = "seen",
values_fill = 0
)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
fish_encounters %>%
pivot_wider(
names_from = station,
values_from = seen,
values_fill = 0
)
```
:::
::::
```{r pivot3, eval = evaluate_chunk, echo = FALSE}
```
## Joining {#joining}
<!-- explain a bit more the args of data_join -->
In `{datawizard}`, joining datasets is done with `data_join()` (or its alias
`data_merge()`). Contrary to `{dplyr}`, this unique function takes care of all
types of join, which are then specified inside the function with the argument
`join` (by default, `join = "left"`).
Below, we show how to perform the four most common joins: full, left, right and
inner. We will use the datasets `band_members`and `band_instruments` provided by `{dplyr}`:
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r eval = evaluate_chunk}
band_members
```
:::
::: {}
```{r eval = evaluate_chunk}
band_instruments
```
:::
::::
### Full join
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r join1, class.source = "datawizard"}
# ---------- datawizard -----------
band_members %>%
data_join(band_instruments, join = "full")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
band_members %>%
full_join(band_instruments)
```
:::
::::
```{r join1, eval = evaluate_chunk, echo = FALSE}
```
### Left and right joins
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r join2, class.source = "datawizard"}
# ---------- datawizard -----------
band_members %>%
data_join(band_instruments, join = "left")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
band_members %>%
left_join(band_instruments)
```
:::
::::
```{r join2, eval = evaluate_chunk, echo = FALSE}
```
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r join3, class.source = "datawizard"}
# ---------- datawizard -----------
band_members %>%
data_join(band_instruments, join = "right")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
band_members %>%
right_join(band_instruments)
```
:::
::::
```{r join3, eval = evaluate_chunk, echo = FALSE}
```
### Inner join
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r join4, class.source = "datawizard"}
# ---------- datawizard -----------
band_members %>%
data_join(band_instruments, join = "inner")
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
band_members %>%
inner_join(band_instruments)
```
:::
::::
```{r join4, eval = evaluate_chunk, echo = FALSE}
```
# Other useful functions
`{datawizard}` contains other functions that are not necessarily included in
`{dplyr}` or `{tidyr}` or do not directly modify the data. Some of them are
inspired from the package `janitor`.
## Work with rownames
We can convert a column in rownames and move rownames to a new column with
`rownames_as_column()` and `column_as_rownames()`:
```{r eval = evaluate_chunk}
mtcars <- head(mtcars)
mtcars
mtcars2 <- mtcars %>%
rownames_as_column(var = "model")
mtcars2
mtcars2 %>%
column_as_rownames(var = "model")
```
## Work with column names
When dealing with messy data, it is sometimes useful to use a row as column
names, and vice versa. This can be done with `row_to_colnames()` and
`colnames_to_row()`.
```{r eval = evaluate_chunk}
x <- data.frame(
X_1 = c(NA, "Title", 1:3),
X_2 = c(NA, "Title2", 4:6)
)
x
x2 <- x %>%
row_to_colnames(row = 2)
x2
x2 %>%
colnames_to_row()
```
## Take a quick look at the data
:::: {style="display: grid; grid-template-columns: 50% 50%; grid-column-gap: 10px;"}
::: {}
```{r glimpse, class.source = "datawizard"}
# ---------- datawizard -----------
data_peek(iris)
```
:::
::: {}
```{r, class.source = "tidyverse"}
# ---------- tidyverse -----------
glimpse(iris)
```
:::
::::
```{r glimpse, eval = evaluate_chunk, echo = FALSE}
```
|