1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
#' @title Recode (or "cut" / "bin") data into groups of values.
#' @name categorize
#'
#' @description
#' This functions divides the range of variables into intervals and recodes
#' the values inside these intervals according to their related interval.
#' It is basically a wrapper around base R's `cut()`, providing a simplified
#' and more accessible way to define the interval breaks (cut-off values).
#'
#' @param x A (grouped) data frame, numeric vector or factor.
#' @param split Character vector, indicating at which breaks to split variables,
#' or numeric values with values indicating breaks. If character, may be one
#' of `"median"`, `"mean"`, `"quantile"`, `"equal_length"`, or `"equal_range"`.
#' `"median"` or `"mean"` will return dichotomous variables, split at their
#' mean or median, respectively. `"quantile"` and `"equal_length"` will split
#' the variable into `n_groups` groups, where each group refers to an interval
#' of a specific range of values. Thus, the length of each interval will be
#' based on the number of groups. `"equal_range"` also splits the variable
#' into multiple groups, however, the length of the interval is given, and
#' the number of resulting groups (and hence, the number of breaks) will be
#' determined by how many intervals can be generated, based on the full range
#' of the variable.
#' @param n_groups If `split` is `"quantile"` or `"equal_length"`, this defines
#' the number of requested groups (i.e. resulting number of levels or values)
#' for the recoded variable(s). `"quantile"` will define intervals based
#' on the distribution of the variable, while `"equal_length"` tries to
#' divide the range of the variable into pieces of equal length.
#' @param range If `split = "equal_range"`, this defines the range of values
#' that are recoded into a new value.
#' @param lowest Minimum value of the recoded variable(s). If `NULL` (the default),
#' for numeric variables, the minimum of the original input is preserved. For
#' factors, the default minimum is `1`. For `split = "equal_range"`, the
#' default minimum is always `1`, unless specified otherwise in `lowest`.
#' @param breaks Character, indicating whether breaks for categorizing data are
#' `"inclusive"` (values indicate the _upper_ bound of the _previous_ group or
#' interval) or `"exclusive"` (values indicate the _lower_ bound of the _next_
#' group or interval to begin). Use `labels = "range"` to make this behaviour
#' easier to see.
#' @param labels Character vector of value labels. If not `NULL`, `categorize()`
#' will returns factors instead of numeric variables, with `labels` used
#' for labelling the factor levels. Can also be `"mean"`, `"median"`,
#' `"range"` or `"observed"` for a factor with labels as the mean/median,
#' the requested range (even if not all values of that range are present in
#' the data) or observed range (range of the actual recoded values) of each
#' group. See 'Examples'.
#' @param append Logical or string. If `TRUE`, recoded or converted variables
#' get new column names and are appended (column bind) to `x`, thus returning
#' both the original and the recoded variables. The new columns get a suffix,
#' based on the calling function: `"_r"` for recode functions, `"_n"` for
#' `to_numeric()`, `"_f"` for `to_factor()`, or `"_s"` for
#' `slide()`. If `append=FALSE`, original variables in `x` will be
#' overwritten by their recoded versions. If a character value, recoded
#' variables are appended with new column names (using the defined suffix) to
#' the original data frame.
#' @param ... not used.
#' @inheritParams extract_column_names
#'
#' @inherit data_rename seealso
#'
#' @details
#'
#' # Splits and breaks (cut-off values)
#'
#' Breaks are by default _exclusive_, this means that these values indicate
#' the lower bound of the next group or interval to begin. Take a simple
#' example, a numeric variable with values from 1 to 9. The median would be 5,
#' thus the first interval ranges from 1-4 and is recoded into 1, while 5-9
#' would turn into 2 (compare `cbind(1:9, categorize(1:9))`). The same variable,
#' using `split = "quantile"` and `n_groups = 3` would define breaks at 3.67
#' and 6.33 (see `quantile(1:9, probs = c(1/3, 2/3))`), which means that values
#' from 1 to 3 belong to the first interval and are recoded into 1 (because
#' the next interval starts at 3.67), 4 to 6 into 2 and 7 to 9 into 3.
#'
#' The opposite behaviour can be achieved using `breaks = "inclusive"`, in which
#' case
#'
#' # Recoding into groups with equal size or range
#'
#' `split = "equal_length"` and `split = "equal_range"` try to divide the
#' range of `x` into intervals of similar (or same) length. The difference is
#' that `split = "equal_length"` will divide the range of `x` into `n_groups`
#' pieces and thereby defining the intervals used as breaks (hence, it is
#' equivalent to `cut(x, breaks = n_groups)`), while `split = "equal_range"`
#' will cut `x` into intervals that all have the length of `range`, where the
#' first interval by defaults starts at `1`. The lowest (or starting) value
#' of that interval can be defined using the `lowest` argument.
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @return `x`, recoded into groups. By default `x` is numeric, unless `labels`
#' is specified. In this case, a factor is returned, where the factor levels
#' (i.e. recoded groups are labelled accordingly.
#'
#' @examples
#' set.seed(123)
#' x <- sample(1:10, size = 50, replace = TRUE)
#'
#' table(x)
#'
#' # by default, at median
#' table(categorize(x))
#'
#' # into 3 groups, based on distribution (quantiles)
#' table(categorize(x, split = "quantile", n_groups = 3))
#'
#' # into 3 groups, user-defined break
#' table(categorize(x, split = c(3, 5)))
#'
#' set.seed(123)
#' x <- sample(1:100, size = 500, replace = TRUE)
#'
#' # into 5 groups, try to recode into intervals of similar length,
#' # i.e. the range within groups is the same for all groups
#' table(categorize(x, split = "equal_length", n_groups = 5))
#'
#' # into 5 groups, try to return same range within groups
#' # i.e. 1-20, 21-40, 41-60, etc. Since the range of "x" is
#' # 1-100, and we have a range of 20, this results into 5
#' # groups, and thus is for this particular case identical
#' # to the previous result.
#' table(categorize(x, split = "equal_range", range = 20))
#'
#' # return factor with value labels instead of numeric value
#' set.seed(123)
#' x <- sample(1:10, size = 30, replace = TRUE)
#' categorize(x, "equal_length", n_groups = 3)
#' categorize(x, "equal_length", n_groups = 3, labels = c("low", "mid", "high"))
#'
#' # cut numeric into groups with the mean or median as a label name
#' x <- sample(1:10, size = 30, replace = TRUE)
#' categorize(x, "equal_length", n_groups = 3, labels = "mean")
#' categorize(x, "equal_length", n_groups = 3, labels = "median")
#'
#' # cut numeric into groups with the requested range as a label name
#' # each category has the same range, and labels indicate this range
#' categorize(mtcars$mpg, "equal_length", n_groups = 5, labels = "range")
#' # in this example, each category has the same range, but labels only refer
#' # to the ranges of the actual values (present in the data) inside each group
#' categorize(mtcars$mpg, "equal_length", n_groups = 5, labels = "observed")
#' @export
categorize <- function(x, ...) {
UseMethod("categorize")
}
#' @export
categorize.default <- function(x, verbose = TRUE, ...) {
if (isTRUE(verbose)) {
insight::format_alert(
paste0("Variables of class `", class(x)[1], "` can't be recoded and remain unchanged.")
)
}
return(x)
}
#' @rdname categorize
#' @export
categorize.numeric <- function(x,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
breaks = "exclusive",
labels = NULL,
verbose = TRUE,
...) {
# sanity check
split <- .sanitize_split_arg(split, n_groups, range)
# handle aliases
if (identical(split, "equal_length")) split <- "length"
if (identical(split, "equal_range")) split <- "range"
# check for valid values
breaks <- match.arg(breaks, c("exclusive", "inclusive"))
# save
original_x <- x
# no missings
x <- stats::na.omit(x)
# stop if all NA
if (!length(x)) {
if (isTRUE(verbose)) {
insight::format_alert(
"Variable contains only missing values. No recoding carried out."
)
}
return(original_x)
}
if (is.numeric(split)) {
category_splits <- split
} else {
category_splits <- switch(split,
median = stats::median(x),
mean = mean(x),
length = n_groups,
quantile = stats::quantile(x, probs = seq_len(n_groups) / n_groups),
range = .equal_range(x, range, n_groups, lowest),
NULL
)
}
# complete ranges, including minimum and maximum
if (!identical(split, "length")) {
category_splits <- unique(c(min(x), category_splits, max(x)))
}
# recode into groups
out <- droplevels(cut(
x,
breaks = category_splits,
include.lowest = TRUE,
right = identical(breaks, "inclusive")
))
cut_result <- out
levels(out) <- 1:nlevels(out)
# fix lowest value, add back into original vector
out <- as.numeric(out)
if (!is.null(lowest)) {
out <- out - (min(out) - lowest)
}
original_x[!is.na(original_x)] <- out
# turn into factor?
.original_x_to_factor(original_x, x, cut_result, labels, out, verbose, ...)
}
#' @export
categorize.factor <- function(x, ...) {
original_x <- x
levels(x) <- 1:nlevels(x)
out <- as.factor(categorize(as.numeric(x), ...))
.set_back_labels(out, original_x, include_values = FALSE)
}
#' @rdname categorize
#' @export
categorize.data.frame <- function(x,
select = NULL,
exclude = NULL,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
breaks = "exclusive",
labels = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_r"
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
x[select] <- lapply(
x[select],
categorize,
split = split,
n_groups = n_groups,
range = range,
lowest = lowest,
breaks = breaks,
labels = labels,
verbose = verbose,
...
)
x
}
#' @export
categorize.grouped_df <- function(x,
select = NULL,
exclude = NULL,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
breaks = "exclusive",
labels = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
attr_data <- attributes(x)
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
remove_group_var = TRUE,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_r"
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
x <- as.data.frame(x)
for (rows in grps) {
x[rows, ] <- categorize(
x[rows, , drop = FALSE],
split = split,
n_groups = n_groups,
range = range,
lowest = lowest,
breaks = breaks,
labels = labels,
select = select,
exclude = exclude,
append = FALSE, # need to set to FALSE here, else variable will be doubled
ignore_case = ignore_case,
verbose = verbose,
...
)
}
# set back class, so data frame still works with dplyr
x <- .replace_attrs(x, attr_data)
x
}
# tools --------------------
.equal_range <- function(x, range, n_groups, lowest = NULL) {
if (is.null(lowest)) lowest <- 1
if (is.null(range)) {
size <- ceiling((max(x) - min(x)) / n_groups)
range <- as.numeric(size)
}
seq(lowest, max(x), by = range)
}
.sanitize_split_arg <- function(split, n_groups, range) {
# check arguments
if (is.character(split)) {
split <- match.arg(
split,
choices = c(
"median", "mean", "quantile", "equal_length", "equal_range",
"equal", "equal_distance", "range", "distance"
)
)
}
if (is.character(split) && split %in% c("quantile", "equal_length") && is.null(n_groups)) {
insight::format_error(
"Recoding based on quantiles or equal-sized groups requires the `n_groups` argument to be specified."
)
}
if (is.character(split) && split == "equal_range" && is.null(n_groups) && is.null(range)) {
insight::format_error(
"Recoding into groups with equal range requires either the `range` or `n_groups` argument to be specified."
)
}
split
}
.original_x_to_factor <- function(original_x, x, cut_result, labels, out, verbose, ...) {
if (!is.null(labels)) {
if (length(labels) == length(unique(out))) {
original_x <- as.factor(original_x)
levels(original_x) <- labels
} else if (length(labels) == 1 && labels %in% c("mean", "median", "range", "observed")) {
original_x <- as.factor(original_x)
no_na_x <- original_x[!is.na(original_x)]
out <- switch(labels,
mean = stats::aggregate(x, list(no_na_x), FUN = mean, na.rm = TRUE)$x,
median = stats::aggregate(x, list(no_na_x), FUN = stats::median, na.rm = TRUE)$x,
# labels basically like what "cut()" returns
range = levels(cut_result),
# range based on the values that are actually present in the data
{
temp <- stats::aggregate(x, list(no_na_x), FUN = range, na.rm = TRUE)$x
apply(temp, 1, function(i) paste0("(", paste(as.vector(i), collapse = "-"), ")"))
}
)
levels(original_x) <- insight::format_value(out, ...)
} else if (isTRUE(verbose)) {
insight::format_warning(
"Argument `labels` and levels of the recoded variable are not of the same length.",
"Variable will not be converted to factor."
)
}
}
original_x
}
|