1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
#' Centering (Grand-Mean Centering)
#'
#' Performs a grand-mean centering of data.
#'
#' @param x A (grouped) data frame, a (numeric or character) vector or a factor.
#' @param force Logical, if `TRUE`, forces centering of factors as
#' well. Factors are converted to numerical values, with the lowest level
#' being the value `1` (unless the factor has numeric levels, which are
#' converted to the corresponding numeric value).
#' @param robust Logical, if `TRUE`, centering is done by subtracting the
#' median from the variables. If `FALSE`, variables are centered by
#' subtracting the mean.
#' @param append Logical or string. If `TRUE`, centered variables get new
#' column names (with the suffix `"_c"`) and are appended (column bind) to `x`,
#' thus returning both the original and the centered variables. If `FALSE`,
#' original variables in `x` will be overwritten by their centered versions.
#' If a character value, centered variables are appended with new column
#' names (using the defined suffix) to the original data frame.
#' @param verbose Toggle warnings and messages.
#' @param weights Can be `NULL` (for no weighting), or:
#' - For data frames: a numeric vector of weights, or a character of the
#' name of a column in the `data.frame` that contains the weights.
#' - For numeric vectors: a numeric vector of weights.
#' @param center Numeric value, which can be used as alternative to
#' `reference` to define a reference centrality. If `center` is of length 1,
#' it will be recycled to match the length of selected variables for centering.
#' Else, `center` must be of same length as the number of selected variables.
#' Values in `center` will be matched to selected variables in the provided
#' order, unless a named vector is given. In this case, names are matched
#' against the names of the selected variables.
#' @param ... Currently not used.
#' @inheritParams extract_column_names
#' @inheritParams standardize
#'
#' @section Selection of variables - the `select` argument:
#' For most functions that have a `select` argument (including this function),
#' the complete input data frame is returned, even when `select` only selects
#' a range of variables. That is, the function is only applied to those variables
#' that have a match in `select`, while all other variables remain unchanged.
#' In other words: for this function, `select` will not omit any non-included
#' variables, so that the returned data frame will include all variables
#' from the input data frame.
#'
#' @note
#' **Difference between centering and standardizing**: Standardized variables
#' are computed by subtracting the mean of the variable and then dividing it by
#' the standard deviation, while centering variables involves only the
#' subtraction.
#'
#' @seealso If centering within-clusters (instead of grand-mean centering)
#' is required, see [demean()]. For standardizing, see [standardize()], and
#' [makepredictcall.dw_transformer()] for use in model formulas.
#'
#' @return The centered variables.
#'
#' @examples
#' data(iris)
#'
#' # entire data frame or a vector
#' head(iris$Sepal.Width)
#' head(center(iris$Sepal.Width))
#' head(center(iris))
#' head(center(iris, force = TRUE))
#'
#' # only the selected columns from a data frame
#' center(anscombe, select = c("x1", "x3"))
#' center(anscombe, exclude = c("x1", "x3"))
#'
#' # centering with reference center and scale
#' d <- data.frame(
#' a = c(-2, -1, 0, 1, 2),
#' b = c(3, 4, 5, 6, 7)
#' )
#'
#' # default centering at mean
#' center(d)
#'
#' # centering, using 0 as mean
#' center(d, center = 0)
#'
#' # centering, using -5 as mean
#' center(d, center = -5)
#' @export
center <- function(x, ...) {
UseMethod("center")
}
#' @rdname center
#' @export
centre <- center
#' @export
center.default <- function(x, verbose = TRUE, ...) {
if (isTRUE(verbose)) {
insight::format_alert(
sprintf("Centering currently not possible for variables of class `%s`.", class(x)[1]),
"You may open an issue at https://github.com/easystats/datawizard/issues."
)
}
x
}
#' @rdname center
#' @export
center.numeric <- function(x,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
verbose = TRUE,
...) {
# set default. Furthermore, data.frame methods cannot return a vector
# of NULLs for each variable - instead they return NA. Thus, we have to
# treat NA like NULL
if (is.null(center) || is.na(center)) {
center <- TRUE
}
my_args <- .process_std_center(x, weights, robust, verbose, reference, center, scale = NULL)
dot_args <- list(...)
if (is.null(my_args)) {
# all NA?
return(x)
} else if (is.null(my_args$check)) {
vals <- rep(0, length(my_args$vals)) # If only unique value
} else {
vals <- as.vector(my_args$vals - my_args$center)
}
centered_x <- rep(NA, length(my_args$valid_x))
centered_x[my_args$valid_x] <- vals
attr(centered_x, "center") <- my_args$center
attr(centered_x, "scale") <- 1
attr(centered_x, "robust") <- robust
# labels
z <- .set_back_labels(centered_x, x, include_values = FALSE)
# don't add attribute when we call data frame methods
if (!isFALSE(dot_args$add_transform_class)) {
class(z) <- c("dw_transformer", class(z))
}
z
}
#' @export
center.factor <- function(x,
robust = FALSE,
weights = NULL,
force = FALSE,
verbose = TRUE,
...) {
if (!force) {
return(x)
}
center(.factor_to_numeric(x), weights = weights, robust = robust, verbose = verbose, ...)
}
#' @export
center.logical <- center.factor
#' @export
center.character <- center.factor
#' @export
center.Date <- center.factor
#' @export
center.AsIs <- center.numeric
#' @rdname center
#' @inheritParams standardize.data.frame
#' @export
center.data.frame <- function(x,
select = NULL,
exclude = NULL,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
force = FALSE,
remove_na = c("none", "selected", "all"),
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# process arguments
my_args <- .process_std_args(x, select, exclude, weights, append,
append_suffix = "_c", keep_factors = force, remove_na, reference,
.center = center, .scale = NULL
)
# set new values
x <- my_args$x
for (var in my_args$select) {
x[[var]] <- center(
x[[var]],
robust = robust,
weights = my_args$weights,
verbose = FALSE,
reference = reference[[var]],
center = my_args$center[var],
force = force,
add_transform_class = FALSE
)
}
attr(x, "center") <- vapply(x[my_args$select], function(z) attributes(z)$center, numeric(1))
attr(x, "scale") <- vapply(x[my_args$select], function(z) attributes(z)$scale, numeric(1))
attr(x, "robust") <- robust
x
}
#' @export
center.grouped_df <- function(x,
select = NULL,
exclude = NULL,
robust = FALSE,
weights = NULL,
reference = NULL,
center = NULL,
force = FALSE,
remove_na = c("none", "selected", "all"),
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...) {
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
my_args <- .process_grouped_df(
x, select, exclude, append,
append_suffix = "_c",
reference, weights, keep_factors = force
)
for (rows in my_args$grps) {
my_args$x[rows, ] <- center(
my_args$x[rows, , drop = FALSE],
select = my_args$select,
exclude = NULL,
robust = robust,
weights = my_args$weights,
remove_na = remove_na,
verbose = verbose,
force = force,
append = FALSE,
center = center,
add_transform_class = FALSE,
...
)
}
# set back class, so data frame still works with dplyr
attributes(my_args$x) <- my_args$info
my_args$x
}
# methods -------------------------
#' @export
print.dw_transformer <- function(x, ...) {
print(as.vector(x), ...)
vector_info <- NULL
if (!is.null(attributes(x)$scale)) {
# attributes for center() / standardize()
vector_info <- sprintf(
"(center: %.2g, scale = %.2g)\n",
attributes(x)$center,
attributes(x)$scale
)
} else if (!is.null(attributes(x)$range_difference)) {
# attributes for normalize() / rescale()
vector_info <- sprintf(
"(original range = %.2g to %.2g)\n",
attributes(x)$min_value,
attributes(x)$min_value + attributes(x)$range_difference
)
}
if (!is.null(vector_info)) {
insight::print_color(vector_info, color = "grey")
}
invisible(x)
}
|