File: convert_na_to.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (203 lines) | stat: -rw-r--r-- 5,238 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#' @title Replace missing values in a variable or a data frame.
#' @name convert_na_to
#'
#' @description
#' Replace missing values in a variable or a data frame.
#'
#' @param x A numeric, factor, or character vector, or a data frame.
#' @param replacement Numeric or character value that will be used to
#' replace `NA`.
#' @param verbose Toggle warnings.
#' @param ... Not used.
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @return
#' `x`, where `NA` values are replaced by `replacement`.
#'
#' @examples
#' # Convert NA to 0 in a numeric vector
#' convert_na_to(
#'   c(9, 3, NA, 2, 3, 1, NA, 8),
#'   replacement = 0
#' )
#'
#' # Convert NA to "missing" in a character vector
#' convert_na_to(
#'   c("a", NA, "d", "z", NA, "t"),
#'   replacement = "missing"
#' )
#'
#' ### For data frames
#'
#' test_df <- data.frame(
#'   x = c(1, 2, NA),
#'   x2 = c(4, 5, NA),
#'   y = c("a", "b", NA)
#' )
#'
#' # Convert all NA to 0 in numeric variables, and all NA to "missing" in
#' # character variables
#' convert_na_to(
#'   test_df,
#'   replace_num = 0,
#'   replace_char = "missing"
#' )
#'
#' # Convert a specific variable in the data frame
#' convert_na_to(
#'   test_df,
#'   replace_num = 0,
#'   replace_char = "missing",
#'   select = "x"
#' )
#'
#' # Convert all variables starting with "x"
#' convert_na_to(
#'   test_df,
#'   replace_num = 0,
#'   replace_char = "missing",
#'   select = starts_with("x")
#' )
#'
#' # Convert NA to 1 in variable 'x2' and to 0 in all other numeric
#' # variables
#' convert_na_to(
#'   test_df,
#'   replace_num = 0,
#'   select = list(x2 = 1)
#' )
#'
#' @export

convert_na_to <- function(x, ...) {
  UseMethod("convert_na_to")
}


#' @export
convert_na_to.default <- function(x, verbose = TRUE, ...) {
  if (isTRUE(verbose)) {
    insight::format_alert(
      sprintf(
        "Converting missing values (`NA`) into regular values currently not possible for variables of class `%s`.",
        class(x)[1]
      )
    )
  }
  x
}


#' @rdname convert_na_to
#' @export
convert_na_to.numeric <- function(x, replacement = NULL, verbose = TRUE, ...) {
  if (insight::is_empty_object(replacement) || !is.numeric(replacement)) {
    if (isTRUE(verbose)) {
      insight::format_warning("`replacement` needs to be a numeric vector.")
    }
  } else if (length(replacement) > 1) {
    if (isTRUE(verbose)) {
      insight::format_warning("`replacement` needs to be of length one.")
    }
  } else {
    x[is.na(x)] <- replacement
  }
  x
}


#' @export
convert_na_to.factor <- function(x, replacement = NULL, verbose = TRUE, ...) {
  if (insight::is_empty_object(replacement) || length(replacement) > 1) {
    if (isTRUE(verbose)) {
      insight::format_warning("`replacement` needs to be of length one.")
    }
  } else {
    x <- addNA(x)
    levels(x) <- c(levels(x), replacement)
    x[is.na(x)] <- replacement
  }
  x
}


#' @rdname convert_na_to
#' @export
convert_na_to.character <- function(x, replacement = NULL, verbose = TRUE, ...) {
  if (insight::is_empty_object(replacement) || !is.character(replacement) && !is.numeric(replacement)) {
    if (isTRUE(verbose)) {
      insight::format_warning(
        "`replacement` needs to be a character or numeric vector."
      )
    }
  } else if (length(replacement) > 1) {
    if (isTRUE(verbose)) {
      insight::format_warning("`replacement` needs to be of length one.")
    }
  } else {
    x[is.na(x)] <- as.character(replacement)
  }
  x
}


#' @param replace_num Value to replace `NA` when variable is of type numeric.
#' @param replace_char Value to replace `NA` when variable is of type character.
#' @param replace_fac Value to replace `NA` when variable is of type factor.
#' @inheritParams extract_column_names
#'
#' @rdname convert_na_to
#' @export
convert_na_to.data.frame <- function(x,
                                     select = NULL,
                                     exclude = NULL,
                                     replacement = NULL,
                                     replace_num = replacement,
                                     replace_char = replacement,
                                     replace_fac = replacement,
                                     ignore_case = FALSE,
                                     regex = FALSE,
                                     verbose = TRUE,
                                     ...) {
  my_data <- x
  select_nse <- .select_nse(
    select,
    data = my_data,
    exclude = exclude,
    ignore_case,
    regex = regex,
    verbose = verbose
  )

  # default
  lookup <- lapply(x, function(y) {
    if (is.numeric(y)) {
      replace_num
    } else if (is.character(y)) {
      replace_char
    } else if (is.factor(y)) {
      replace_fac
    }
  })

  # override for specific vars
  try_eval <- try(eval(select), silent = TRUE)
  select_is_list <- !inherits(try_eval, "try-error") && is.list(select)

  if (select_is_list) {
    for (i in select_nse) {
      lookup[[i]] <- select[[i]]
    }
  } else {
    lookup <- lookup[names(lookup) %in% select_nse]
  }

  lookup <- Filter(Negate(is.null), lookup)

  for (i in names(lookup)) {
    x[[i]] <- convert_na_to(x[[i]], replacement = lookup[[i]], verbose = verbose)
  }

  x
}