File: convert_to_na.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (201 lines) | stat: -rw-r--r-- 5,760 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#' @title Convert non-missing values in a variable into missing values.
#' @name convert_to_na
#'
#' @description
#' Convert non-missing values in a variable into missing values.
#'
#' @param x A vector, factor or a data frame.
#' @param na Numeric, character vector or logical (or a list of numeric, character
#'   vectors or logicals) with values that should be converted to `NA`. Numeric
#'   values applied to numeric vectors, character values are used for factors,
#'   character vectors or date variables, and logical values for logical vectors.
#' @param drop_levels Logical, for factors, when specific levels are replaced
#'   by `NA`, should unused levels be dropped?
#' @param ... Not used.
#' @inheritParams extract_column_names
#'
#' @return
#' `x`, where all values in `na` are converted to `NA`.
#'
#' @examples
#' x <- sample(1:6, size = 30, replace = TRUE)
#' x
#' # values 4 and 5 to NA
#' convert_to_na(x, na = 4:5)
#'
#' # data frames
#' set.seed(123)
#' x <- data.frame(
#'   a = sample(1:6, size = 20, replace = TRUE),
#'   b = sample(letters[1:6], size = 20, replace = TRUE),
#'   c = sample(c(30:33, 99), size = 20, replace = TRUE)
#' )
#' # for all numerics, convert 5 to NA. Character/factor will be ignored.
#' convert_to_na(x, na = 5)
#'
#' # for numerics, 5 to NA, for character/factor, "f" to NA
#' convert_to_na(x, na = list(6, "f"))
#'
#' # select specific variables
#' convert_to_na(x, select = c("a", "b"), na = list(6, "f"))
#' @export
convert_to_na <- function(x, ...) {
  UseMethod("convert_to_na")
}


#' @export
convert_to_na.default <- function(x, verbose = TRUE, ...) {
  if (isTRUE(verbose)) {
    insight::format_alert(
      sprintf(
        "Converting values into missing values (`NA`) currently not possible for variables of class `%s`.",
        class(x)[1]
      )
    )
  }
  x
}


#' @rdname convert_to_na
#' @export
convert_to_na.numeric <- function(x, na = NULL, verbose = TRUE, ...) {
  # if we have a list, use first valid element
  if (is.list(na)) {
    na <- unlist(na[vapply(na, is.numeric, FUN.VALUE = TRUE)], use.names = FALSE)
  }

  if (insight::is_empty_object(na) || !is.numeric(na)) {
    if (isTRUE(verbose)) {
      insight::format_alert(
        "Could not convert values into `NA` for a numeric variable.",
        "To do this, `na` needs to be a numeric vector, or a list that contains numeric vector elements."
      )
    }
  } else {
    matches <- which(x %in% na)
    x[matches] <- NA
    # drop unused labels
    value_labels <- attr(x, "labels", exact = TRUE)
    attr(x, "labels") <- value_labels[!value_labels %in% na]
  }
  x
}


#' @rdname convert_to_na
#' @export
convert_to_na.factor <- function(x, na = NULL, drop_levels = FALSE, verbose = TRUE, ...) {
  # if we have a list, use first valid element
  if (is.list(na)) {
    na <- unlist(na[vapply(na, is.character, FUN.VALUE = TRUE)], use.names = FALSE)
  }

  if (insight::is_empty_object(na) || (!is.factor(na) && !is.character(na))) {
    if (isTRUE(verbose)) {
      insight::format_alert(
        "Could not convert values into `NA` for a factor or character variable.",
        "To do this, `na` needs to be a character vector, or a list that contains character vector elements."
      )
    }
  } else {
    matches <- which(x %in% na)
    x[matches] <- NA
    # drop unused labels
    value_labels <- attr(x, "labels", exact = TRUE)
    if (is.factor(x) && isTRUE(drop_levels)) {
      # save label attribute
      variable_label <- attr(x, "label", exact = TRUE)
      x <- droplevels(x)
      # droplevels() discards attributes, so we need to re-assign them
      attr(x, "label") <- variable_label
    }
    attr(x, "labels") <- value_labels[!value_labels %in% na]
  }
  x
}


#' @export
convert_to_na.character <- convert_to_na.factor


#' @export
convert_to_na.Date <- function(x, na = NULL, verbose = TRUE, ...) {
  # if we have a list, use first valid element
  if (is.list(na)) {
    na <- na[vapply(na, .is_date, FUN.VALUE = logical(1L))]
    if (length(na) > 1) {
      na <- na[[1]]
    }
  }

  if (insight::is_empty_object(na) || !.is_date(na)) {
    if (isTRUE(verbose)) {
      insight::format_alert(
        "Could not convert values into `NA` for a date/time variable.",
        "To do this, `na` must be of class 'Date'."
      )
    }
  } else {
    matches <- which(x == na)
    x[matches] <- NA
  }
  x
}


#' @export
convert_to_na.logical <- function(x, na = NULL, verbose = TRUE, ...) {
  # if we have a list, use first valid element
  if (is.list(na)) {
    na <- unlist(na[vapply(na, is.logical, FUN.VALUE = TRUE)], use.names = FALSE)
  }

  if (insight::is_empty_object(na) || !is.logical(na)) {
    if (isTRUE(verbose)) {
      insight::format_alert(
        "Could not convert values into `NA` for a logical variable.",
        "To do this, `na` needs to be a logical vector, or a list that contains logical vector elements."
      )
    }
  } else {
    matches <- which(x == na)
    x[matches] <- NA
  }
  x
}


#' @rdname convert_to_na
#' @export
convert_to_na.data.frame <- function(x,
                                     select = NULL,
                                     exclude = NULL,
                                     na = NULL,
                                     drop_levels = FALSE,
                                     ignore_case = FALSE,
                                     regex = FALSE,
                                     verbose = TRUE,
                                     ...) {
  # evaluate arguments
  select <- .select_nse(select,
    x,
    exclude,
    ignore_case,
    regex = regex,
    verbose = verbose
  )

  x[select] <- lapply(
    x[select],
    convert_to_na,
    na = na,
    drop_levels = drop_levels,
    verbose = verbose,
    ...
  )

  x
}