1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
#' Generate a codebook of a data frame.
#'
#' `data_codebook()` generates codebooks from data frames, i.e. overviews
#' of all variables and some more information about each variable (like
#' labels, values or value range, frequencies, amount of missing values).
#'
#' @param data A data frame, or an object that can be coerced to a data frame.
#' @param variable_label_width Length of variable labels. Longer labels will be
#' wrapped at `variable_label_width` chars. If `NULL`, longer labels will not
#' be split into multiple lines. Only applies to _labelled data_.
#' @param value_label_width Length of value labels. Longer labels will be
#' shortened, where the remaining part is truncated. Only applies to
#' _labelled data_ or factor levels.
#' @param range_at Indicates how many unique values in a numeric vector are
#' needed in order to print a range for that variable instead of a frequency
#' table for all numeric values. Can be useful if the data contains numeric
#' variables with only a few unique values and where full frequency tables
#' instead of value ranges should be displayed.
#' @param max_values Number of maximum values that should be displayed. Can be
#' used to avoid too many rows when variables have lots of unique values.
#' @param font_size For HTML tables, the font size.
#' @param line_padding For HTML tables, the distance (in pixel) between lines.
#' @param row_color For HTML tables, the fill color for odd rows.
#' @inheritParams standardize.data.frame
#' @inheritParams extract_column_names
#'
#' @return A formatted data frame, summarizing the content of the data frame.
#' Returned columns include the column index of the variables in the original
#' data frame (`ID`), column name, variable label (if data is labelled), type
#' of variable, number of missing values, unique values (or value range),
#' value labels (for labelled data), and a frequency table (N for each value).
#' Most columns are formatted as character vectors.
#'
#' @note There are methods to `print()` the data frame in a nicer output, as
#' well methods for printing in markdown or HTML format (`print_md()` and
#' `print_html()`). The `print()` method for text outputs passes arguments in
#' `...` to [`insight::export_table()`].
#'
#' @examples
#' data(iris)
#' data_codebook(iris, select = starts_with("Sepal"))
#'
#' data(efc)
#' data_codebook(efc)
#'
#' # shorten labels
#' data_codebook(efc, variable_label_width = 20, value_label_width = 15)
#'
#' # automatic range for numerics at more than 5 unique values
#' data(mtcars)
#' data_codebook(mtcars, select = starts_with("c"))
#'
#' # force all values to be displayed
#' data_codebook(mtcars, select = starts_with("c"), range_at = 100)
#' @export
data_codebook <- function(data,
select = NULL,
exclude = NULL,
variable_label_width = NULL,
value_label_width = NULL,
max_values = 10,
range_at = 6,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...) {
data_name <- insight::safe_deparse(substitute(data))
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
data,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# check for emtpy columns, and remove
empty <- empty_columns(data[select])
if (length(empty)) {
if (verbose) {
insight::format_warning(
sprintf("Following %i columns were empty and have been removed:", length(empty)),
text_concatenate(names(empty))
)
}
select <- select[-empty]
}
# needed for % NA
rows <- nrow(data)
max_values <- max_values + 1
out <- lapply(seq_along(select), function(id) {
# variable
x <- data[[select[id]]]
x_na <- is.na(x)
x_inf <- is.infinite(x)
# inital data frame for codebook
d <- data.frame(
ID = which(colnames(data) == select[id]),
Name = select[id],
Type = .variable_type(x),
Missings = sprintf("%g (%.1f%%)", sum(x_na), 100 * (sum(x_na) / rows)),
stringsAsFactors = FALSE,
row.names = NULL,
check.names = FALSE
)
# check if there are variable labels
varlab <- attr(x, "label", exact = TRUE)
if (!is.null(varlab) && length(varlab)) {
variable_label <- varlab
# if variable labels are too long, split into multiple elements
if (!is.null(variable_label_width) && nchar(variable_label) > variable_label_width) {
variable_label <- insight::trim_ws(unlist(strsplit(
text_wrap(variable_label, width = variable_label_width),
"\n",
fixed = TRUE
), use.names = FALSE))
}
} else {
variable_label <- NA
}
# we may need to remove duplicated value range elements
flag_range <- FALSE
# save value labels
vallab <- attr(x, "labels", exact = TRUE)
# do we have labelled NA values? If so, include labelled NAs in count table
# we do this by converting NA values into character strings
if (anyNA(vallab) && insight::check_if_installed("haven", quietly = TRUE)) {
# get na-tags, i.e. the value labels for the different NA values
na_labels <- haven::na_tag(vallab)
# replace NA in labels with NA tags
vallab[!is.na(na_labels)] <- stats::setNames(
paste0("NA(", na_labels[!is.na(na_labels)], ")"),
names(vallab[!is.na(na_labels)])
)
# replace tagged NAs in variable with their values, tagged as NA(value)
na_values <- haven::na_tag(x)
# need to convert, we still have haven-class, which cannot coerce
x <- as.character(x)
x[!is.na(na_values)] <- paste0("NA(", na_values[!is.na(na_values)], ")")
# update information on NA - we still might have non-labelled (regular) NA
x_na <- is.na(x)
}
# remove NA and Inf, for tabulate(). as.factor() will convert NaN
# to a factor level "NaN", which we don't want here (same for Inf),
# because tabulate() will then return frequencies for that level, too
x <- x[!(x_na | x_inf)]
# get unique values, to remove non labelled data
unique_values <- unique(x)
# coerce to factor, for tabulate(). We will coerce numerics to factor later
# which is required because tabulate() doesn't return frequencies for values
# lower than 1
if (!is.numeric(x) && !is.factor(x)) {
x <- as.factor(x)
}
# for ranges, we don't want the N% value, so use this to flag range-values
is_range <- FALSE
# handle labelled data - check if there are value labels or factor levels,
# and extract values and N
if (!is.null(vallab) && length(vallab)) {
# if not all values are labelled, fill in value labels
if (!all(unique_values %in% vallab)) {
new_vals <- setdiff(unique_values, vallab)
vallab <- c(vallab, stats::setNames(new_vals, new_vals))
}
# if not all value labels are present in the data, remove unused value labels
if (!all(vallab %in% unique_values)) {
not_needed <- setdiff(vallab, unique_values)
# match not needed values in vallab vector - values from labels
# may not be in sorted order (e.g. 1, 2, 3, -9), or may be character
# vectors in case of tagged NAs, so we have to make sure we know which
# values can be removed from vallab
not_needed <- stats::na.omit(match(not_needed, vallab))
vallab <- vallab[-not_needed]
}
# we now should have the same length of value labels and labelled values
# which should also match the numberof unique values in the vector.
# "tabulate" creates frequency tables by sorting by values/levels, so
# we need to make sure that labels are also in sorted order.
value_labels <- names(vallab)[order(unname(vallab))]
values <- sort(unname(vallab))
frq <- tabulate(as.factor(x))
# handle factors
} else if (is.factor(x)) {
values <- levels(x)
value_labels <- NA
frq <- tabulate(x)
# handle numerics
} else {
value_labels <- NA
# only range for too many unique values
if (length(unique_values) >= range_at) {
r <- range(x, na.rm = TRUE)
values <- sprintf("[%g, %g]", round(r[1], 2), round(r[2], 2))
frq <- sum(!x_na)
flag_range <- length(variable_label) > 1
is_range <- TRUE
# if we have few values, we can print whole freq. table
} else {
values <- sort(unique_values)
frq <- tabulate(as.factor(x))
}
}
# tabulate fills 0 for non-existing values, remove those
frq <- frq[frq != 0]
# add Inf values?
if (any(x_inf) && length(frq) <= max_values) {
values <- c(values, Inf)
if (!is.na(value_labels)) {
value_labels <- c(value_labels, "infinite")
}
frq <- c(frq, sum(x_inf))
# Inf are added as value, so don't flag range any more,
# since we now have proportions for the range and the inf values.
is_range <- FALSE
}
# add proportions, but not for ranges, since these are always 100%
if (is_range) {
frq_proportions <- ""
} else {
frq_proportions <- sprintf("%.1f%%", round(100 * (frq / sum(frq)), 1))
}
# make sure we have not too long rows, e.g. for variables that
# have dozens of unique values
if (length(value_labels) > max_values) {
value_labels <- value_labels[1:max_values]
value_labels[max_values] <- "(...)"
}
if (length(frq) > max_values) {
frq <- frq[1:max_values]
frq_proportions <- frq_proportions[1:max_values]
frq[max_values] <- NA
frq_proportions[max_values] <- NA
}
if (length(values) > max_values) {
values <- values[1:max_values]
values[max_values] <- "(...)"
}
# make sure length recycling doesn't fail, e.g. if we have split
# variable_label into two lines (i.e. vector of length 2), but we have
# 7 values in "frq", creating the data frame will fail. In this case,
# we have to make sure that recycling shorter vectors works.
if (length(variable_label) > 1 && !flag_range) {
variable_label <- variable_label[seq_along(frq)]
}
# shorten value labels
if (!is.null(value_label_width)) {
value_labels <- insight::format_string(value_labels, length = value_label_width)
}
# add values, value labels and frequencies to data frame
d <- cbind(d, data.frame(
variable_label,
values,
value_labels,
frq,
proportions = frq_proportions,
stringsAsFactors = FALSE
))
# which columns need to be checked for duplicates?
duplicates <- c("ID", "Name", "Type", "Missings", "variable_label")
if (isTRUE(flag_range)) {
# when we have numeric variables with value range as values, and when
# these variables had long variable labels that have been wrapped,
# the range value is duplicated (due to recycling), so we need to fix
# this here.
duplicates <- c(duplicates, c("values", "frq", "proportions"))
}
# clear duplicates due to recycling
for (i in duplicates) {
d[[i]][duplicated(d[[i]])] <- ""
}
# remove empty rows
d <- remove_empty_rows(d)
# add empty row at the end, as separator
d[nrow(d) + 1, ] <- rep("", ncol(d))
# add row ID
d$.row_id <- id
d
})
out <- do.call(rbind, out)
# rename
pattern <- c("variable_label", "values", "value_labels", "frq", "proportions")
replacement <- c("Label", "Values", "Value Labels", "N", "Prop")
for (i in seq_along(pattern)) {
names(out) <- replace(names(out), names(out) == pattern[i], replacement[i])
}
# remove all empty columns
out <- remove_empty_columns(out)
# reorder
column_order <- c(
"ID", "Name", "Label", "Type", "Missings", "Values",
"Value Labels", "N", "Prop", ".row_id"
)
out <- out[union(intersect(column_order, names(out)), names(out))]
attr(out, "data_name") <- data_name
attr(out, "n_rows") <- nrow(data)
attr(out, "n_cols") <- ncol(data)
attr(out, "n_shown") <- length(select)
class(out) <- c("data_codebook", "data.frame")
out
}
# methods ----------------------
#' @export
format.data_codebook <- function(x, format = "text", ...) {
# use [["N"]] to avoid partial matching
if (any(stats::na.omit(nchar(x[["N"]]) > 5))) {
x[["N"]] <- insight::trim_ws(prettyNum(x[["N"]], big.mark = ","))
x[["N"]][x[["N"]] == "NA" | is.na(x[["N"]])] <- ""
}
# merge N and %
if (!is.null(x$Prop)) {
x$Prop[x$Prop == "NA" | is.na(x$Prop)] <- ""
# align only for text format
if (identical(format, "text")) {
x$Prop[x$Prop != ""] <- format(x$Prop[x$Prop != ""], justify = "right") # nolint
}
x[["N"]][x$Prop != ""] <- sprintf( # nolint
"%s (%s)",
as.character(x[["N"]][x$Prop != ""]), # nolint
x$Prop[x$Prop != ""] # nolint
)
x$Prop <- NULL
}
x
}
#' @export
print.data_codebook <- function(x, ...) {
caption <- c(.get_codebook_caption(x), "blue")
x$.row_id <- NULL
cat(
insight::export_table(format(x),
title = caption,
empty_line = "-",
cross = "+",
align = .get_codebook_align(x),
...
)
)
}
#' @rdname data_codebook
#' @export
print_html.data_codebook <- function(x,
font_size = "100%",
line_padding = 3,
row_color = "#eeeeee",
...) {
insight::check_if_installed("gt")
caption <- .get_codebook_caption(x)
attr(x, "table_caption") <- caption
# since we have each value at its own row, the HTML table contains
# horizontal borders for each cell/row. We want to remove those borders
# from rows that actually belong to one variable
separator_lines <- which(duplicated(x$.row_id) & x$N == "") # nolint
# remove separator lines, as we don't need these for HTML tables
x <- x[-separator_lines, ]
# check row IDs, and find odd rows
odd_rows <- (x$.row_id %% 2 == 1)
x$.row_id <- NULL
# create basic table
out <- insight::export_table(
format(x, format = "html"),
title = caption,
format = "html",
align = .get_codebook_align(x)
)
# no border for rows which are not separator lines
out <- gt::tab_style(
out,
style = list(gt::cell_borders(sides = "top", style = "hidden")),
locations = gt::cells_body(rows = which(x$ID == "")) # nolint
)
# highlight odd rows
if (!is.null(row_color)) {
out <- gt::tab_style(
out,
style = list(gt::cell_fill(color = row_color)),
locations = gt::cells_body(rows = odd_rows)
)
}
# set up additonal HTML options
gt::tab_options(out,
table.font.size = font_size,
data_row.padding = gt::px(line_padding)
)
}
#' @export
print_md.data_codebook <- function(x, ...) {
caption <- .get_codebook_caption(x)
x$.row_id <- NULL
attr(x, "table_caption") <- caption
insight::export_table(format(x, format = "markdown"),
title = caption,
align = .get_codebook_align(x),
format = "markdown"
)
}
# helper ---------
.get_codebook_caption <- function(x) {
n_rows <- as.character(attributes(x)$n_rows)
if (nchar(n_rows) > 5) {
n_rows <- prettyNum(n_rows, big.mark = ",")
}
sprintf(
"%s (%s rows and %i variables, %i shown)",
attributes(x)$data_name,
n_rows,
attributes(x)$n_cols,
attributes(x)$n_shown
)
}
.get_codebook_align <- function(x) {
# need to remove this one
x$Prop <- NULL
align <- c(
ID = "l",
Name = "l",
Label = "l",
Type = "l",
Missings = "r",
Values = "r",
`Value Labels` = "l",
N = "r"
)
align <- align[colnames(x)]
paste(unname(align), collapse = "")
}
|