1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
#' Return filtered or sliced data frame, or row indices
#'
#' Return a filtered (or sliced) data frame or row indices of a data frame that
#' match a specific condition. `data_filter()` works like `data_match()`, but works
#' with logical expressions or row indices of a data frame to specify matching
#' conditions.
#'
#' @param x A data frame.
#' @param to A data frame matching the specified conditions. Note that if
#' `match` is a value other than `"and"`, the original row order might be
#' changed. See 'Details'.
#' @param match String, indicating with which logical operation matching
#' conditions should be combined. Can be `"and"` (or `"&"`), `"or"` (or `"|"`)
#' or `"not"` (or `"!"`).
#' @param return_indices Logical, if `FALSE`, return the vector of rows that
#' can be used to filter the original data frame. If `FALSE` (default),
#' returns directly the filtered data frame instead of the row indices.
#' @param remove_na Logical, if `TRUE`, missing values (`NA`s) are removed before
#' filtering the data. This is the default behaviour, however, sometimes when
#' row indices are requested (i.e. `return_indices=TRUE`), it might be useful
#' to preserve `NA` values, so returned row indices match the row indices of
#' the original data frame.
#' @param ... A sequence of logical expressions indicating which rows to keep,
#' or a numeric vector indicating the row indices of rows to keep. Can also be
#' a string representation of a logical expression (e.g. `"x > 4"`), a
#' character vector (e.g. `c("x > 4", "y == 2")`) or a variable that contains
#' the string representation of a logical expression. These might be useful
#' when used in packages to avoid defining undefined global variables.
#' @param drop_na Deprecated, please use `remove_na` instead.
#'
#' @return A filtered data frame, or the row indices that match the specified
#' configuration.
#'
#' @details For `data_match()`, if `match` is either `"or"` or `"not"`, the
#' original row order from `x` might be changed. If preserving row order is
#' required, use `data_filter()` instead.
#'
#' ```
#' # mimics subset() behaviour, preserving original row order
#' head(data_filter(mtcars[c("mpg", "vs", "am")], vs == 0 | am == 1))
#' #> mpg vs am
#' #> Mazda RX4 21.0 0 1
#' #> Mazda RX4 Wag 21.0 0 1
#' #> Datsun 710 22.8 1 1
#' #> Hornet Sportabout 18.7 0 0
#' #> Duster 360 14.3 0 0
#' #> Merc 450SE 16.4 0 0
#'
#' # re-sorting rows
#' head(data_match(mtcars[c("mpg", "vs", "am")],
#' data.frame(vs = 0, am = 1),
#' match = "or"))
#' #> mpg vs am
#' #> Mazda RX4 21.0 0 1
#' #> Mazda RX4 Wag 21.0 0 1
#' #> Hornet Sportabout 18.7 0 0
#' #> Duster 360 14.3 0 0
#' #> Merc 450SE 16.4 0 0
#' #> Merc 450SL 17.3 0 0
#' ```
#'
#' While `data_match()` works with data frames to match conditions against,
#' `data_filter()` is basically a wrapper around `subset(subset = <filter>)`.
#' However, unlike `subset()`, it preserves label attributes and is useful when
#' working with labelled data.
#'
#' @examples
#' data_match(mtcars, data.frame(vs = 0, am = 1))
#' data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
#'
#' # observations where "vs" is NOT 0 AND "am" is NOT 1
#' data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
#' # equivalent to
#' data_filter(mtcars, vs != 0 & am != 1)
#'
#' # observations where EITHER "vs" is 0 OR "am" is 1
#' data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
#' # equivalent to
#' data_filter(mtcars, vs == 0 | am == 1)
#'
#' # slice data frame by row indices
#' data_filter(mtcars, 5:10)
#'
#' # Define a custom function containing data_filter()
#' my_filter <- function(data, variable) {
#' data_filter(data, variable)
#' }
#' my_filter(mtcars, "cyl == 6")
#'
#' # Pass complete filter-condition as string.
#' my_filter <- function(data, condition) {
#' data_filter(data, condition)
#' }
#' my_filter(mtcars, "am != 0")
#'
#' # string can also be used directly as argument
#' data_filter(mtcars, "am != 0")
#'
#' # or as variable
#' fl <- "am != 0"
#' data_filter(mtcars, fl)
#' @inherit data_rename seealso
#' @export
data_match <- function(x,
to,
match = "and",
return_indices = FALSE,
remove_na = TRUE,
drop_na,
...) {
if (!is.data.frame(to)) {
to <- as.data.frame(to)
}
original_x <- x
## TODO: remove deprecated argument later
if (!missing(drop_na)) {
insight::format_warning("Argument `drop_na` is deprecated. Please use `remove_na` instead.")
remove_na <- drop_na
}
# evaluate
match <- match.arg(tolower(match), c("and", "&", "&&", "or", "|", "||", "!", "not"))
match <- switch(match,
`&` = ,
`&&` = ,
and = "and",
`!` = ,
not = "not",
"or"
)
# validation check
shared_columns <- intersect(colnames(x), colnames(to))
if (is.null(shared_columns) || length(shared_columns) == 0L) {
insight::format_error(
"None of the columns from the data frame with matching conditions were found in `x`."
)
}
# only select common columns
x <- x[shared_columns]
# prepare
if (identical(match, "or")) {
idx <- vector("numeric", length = 0L)
} else {
# remove missings before matching
if (isTRUE(remove_na)) {
x <- x[stats::complete.cases(x), , drop = FALSE]
}
idx <- seq_len(nrow(x))
}
# Find matching rows
for (col in names(to)) {
values <- x[[col]]
if (match == "or") {
idx <- union(idx, which(values %in% to[[col]]))
} else if (match == "not") {
idx <- idx[!values[idx] %in% to[[col]]]
} else {
idx <- idx[values[idx] %in% to[[col]]]
}
}
# prepare output
if (isFALSE(return_indices)) {
out <- original_x[idx, , drop = FALSE]
# restore value and variable labels
for (i in colnames(out)) {
attr(out[[i]], "label") <- attr(original_x[[i]], "label", exact = TRUE)
attr(out[[i]], "labels") <- attr(original_x[[i]], "labels", exact = TRUE)
}
} else {
out <- idx
}
# add back custom attributes
out <- .replace_attrs(out, attributes(original_x))
out
}
#' @rdname data_match
#' @export
data_filter <- function(x, ...) {
UseMethod("data_filter")
}
#' @export
data_filter.data.frame <- function(x, ...) {
out <- x
dots <- match.call(expand.dots = FALSE)[["..."]]
if (any(nzchar(names(dots), keepNA = TRUE))) {
insight::format_error(
"Filtering did not work. Please check if you need `==` (instead of `=`) for comparison."
)
}
# turn character vector (like `c("mpg <= 20", "cyl == 6")`) into symbols
if (length(dots) == 1) {
character_vector <- .dynEval(dots[[1]], ifnotfound = NULL)
if (is.character(character_vector) && length(character_vector) > 1) {
dots <- lapply(character_vector, str2lang)
}
}
# Check syntax of the filter. Must be done *before* calling subset()
# (cf easystats/datawizard#237)
for (.fcondition in dots) {
.check_filter_syntax(insight::safe_deparse(.fcondition))
}
for (i in seq_along(dots)) {
# only proceed when result is still valid
if (!is.null(out)) {
symbol <- dots[[i]]
# evaluate, we may have a variable with filter expression
eval_symbol <- .dynEval(symbol, ifnotfound = NULL)
# validation check: is variable named like a function?
if (is.function(eval_symbol)) {
eval_symbol <- .dynGet(symbol, ifnotfound = NULL)
}
eval_symbol_numeric <- NULL
if (!is.null(eval_symbol)) {
# when possible to evaluate, do we have a numeric vector provided
# as string? (e.g. `"5:10"`) - then try to coerce to numeric
eval_symbol_numeric <- tryCatch(eval(parse(text = eval_symbol)), error = function(e) NULL)
}
# here we go when we have a filter expression, and no numeric vector to slice
if (is.null(eval_symbol) || (!is.numeric(eval_symbol) && !is.numeric(eval_symbol_numeric))) {
# could be evaluated? Then filter expression is a string and we need
# to convert into symbol
if (is.character(eval_symbol)) {
symbol <- str2lang(eval_symbol)
}
# filter data
out <- tryCatch(
subset(out, subset = eval(symbol, envir = new.env())),
warning = function(e) e,
error = function(e) e
)
} else if (is.numeric(eval_symbol)) {
# if symbol could be evaluated and is numeric, slice
out <- tryCatch(out[eval_symbol, , drop = FALSE], error = function(e) NULL)
} else if (is.numeric(eval_symbol_numeric)) {
# if symbol could be evaluated, was string and could be converted to numeric, slice
out <- tryCatch(out[eval_symbol_numeric, , drop = FALSE], error = function(e) NULL)
}
if (inherits(out, "simpleError")) {
error_msg <- out$message[1]
# try to find out which variable was the cause for the error
if (grepl("object '(.*)' not found", error_msg)) {
error_var <- gsub("object '(.*)' not found", "\\1", error_msg)
# some syntax errors do not relate to misspelled variables...
if (!error_var %in% colnames(x)) {
insight::format_error(
paste0("Variable \"", error_var, "\" was not found in the dataset."),
.misspelled_string(colnames(x), error_var, "Possibly misspelled?")
)
}
}
out <- NULL
}
}
}
if (is.null(out)) {
insight::format_error(
"Filtering did not work. Please check the syntax of your conditions."
)
}
# restore value and variable labels
for (i in colnames(out)) {
attr(out[[i]], "label") <- attr(x[[i]], "label", exact = TRUE)
attr(out[[i]], "labels") <- attr(x[[i]], "labels", exact = TRUE)
}
# add back custom attributes
out <- .replace_attrs(out, attributes(x))
out
}
#' @export
data_filter.grouped_df <- function(x, ...) {
grps <- attr(x, "groups", exact = TRUE)
grps <- grps[[".rows"]]
dots <- match.call(expand.dots = FALSE)[["..."]]
out <- lapply(grps, function(grp) {
arguments <- list(x[grp, ])
arguments <- c(arguments, dots)
do.call("data_filter.data.frame", arguments)
})
out <- do.call(rbind, out)
if (!insight::object_has_rownames(x)) {
rownames(out) <- NULL
}
out
}
# helper -------------------
.check_filter_syntax <- function(.fcondition) {
# NOTE: We cannot check for `=` when "filter" is not a character vector
# because the function will then fail in general. I.e.,
# "data_filter(mtcars, filter = mpg > 10 & cyl = 4)" will not start
# running this function and never reaches the first code line,
# but immediately stops...
tmp <- gsub("==", "", .fcondition, fixed = TRUE)
tmp <- gsub("<=", "", tmp, fixed = TRUE)
tmp <- gsub(">=", "", tmp, fixed = TRUE)
tmp <- gsub("!=", "", tmp, fixed = TRUE)
# We want to check whether user used a "=" in the filter syntax. This
# typically indicates that the comparison "==" is probably wrong by using
# a "=" instead of `"=="`. However, if a function was provided, we indeed
# may have "=", e.g. if the pattern was
# `data_filter(out, grep("pattern", x = value))`. We thus first check if we
# can identify a function call, and only continue checking for wrong syntax
# when we have not identified a function.
if (!is.function(try(get(gsub("^(.*?)\\((.*)", "\\1", tmp)), silent = TRUE))) {
# Give more informative message to users
# about possible misspelled comparisons / logical conditions
# check if "=" instead of "==" was used?
if (any(grepl("=", tmp, fixed = TRUE))) {
insight::format_error(
"Filtering did not work. Please check if you need `==` (instead of `=`) for comparison."
)
}
# check if "&&" etc instead of "&" was used?
logical_operator <- NULL
if (any(grepl("&&", .fcondition, fixed = TRUE))) {
logical_operator <- "&&"
}
if (any(grepl("||", .fcondition, fixed = TRUE))) {
logical_operator <- "||"
}
if (!is.null(logical_operator)) {
insight::format_error(
paste0(
"Filtering did not work. Please check if you need `",
substr(logical_operator, 0, 1),
"` (instead of `", logical_operator, "`) as logical operator."
)
)
}
}
}
|