1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#' @title Read (import) data files from various sources
#' @name data_read
#'
#' @description
#' This functions imports data from various file types. It is a small wrapper
#' around `haven::read_spss()`, `haven::read_stata()`, `haven::read_sas()`,
#' `readxl::read_excel()` and `data.table::fread()` resp. `readr::read_delim()`
#' (the latter if package **data.table** is not installed). Thus, supported file
#' types for importing data are data files from SPSS, SAS or Stata, Excel files
#' or text files (like '.csv' files). All other file types are passed to
#' `rio::import()`. `data_write()` works in a similar way.
#'
#' @param path Character string, the file path to the data file.
#' @param path_catalog Character string, path to the catalog file. Only relevant
#' for SAS data files.
#' @param encoding The character encoding used for the file. Usually not needed.
#' @param convert_factors If `TRUE` (default), numeric variables, where all
#' values have a value label, are assumed to be categorical and converted into
#' factors. If `FALSE`, no variable types are guessed and no conversion of
#' numeric variables into factors will be performed. For `data_read()`, this
#' argument only applies to file types with *labelled data*, e.g. files from
#' SPSS, SAS or Stata. See also section 'Differences to other packages'. For
#' `data_write()`, this argument only applies to the text (e.g. `.txt` or
#' `.csv`) or spreadsheet file formats (like `.xlsx`). Converting to factors
#' might be useful for these formats because labelled numeric variables are then
#' converted into factors and exported as character columns - else, value labels
#' would be lost and only numeric values are written to the file.
#' @param verbose Toggle warnings and messages.
#' @param ... Arguments passed to the related `read_*()` or `write_*()` functions.
#'
#' @return A data frame.
#'
#' @section Supported file types:
#' - `data_read()` is a wrapper around the **haven**, **data.table**, **readr**
#' **readxl** and **rio** packages. Currently supported file types are `.txt`,
#' `.csv`, `.xls`, `.xlsx`, `.sav`, `.por`, `.dta` and `.sas` (and related
#' files). All other file types are passed to `rio::import()`.
#' - `data_write()` is a wrapper around **haven**, **readr** and **rio**
#' packages, and supports writing files into all formats supported by these
#' packages.
#'
#' @section Compressed files (zip) and URLs:
#' `data_read()` can also read the above mentioned files from URLs or from
#' inside zip-compressed files. Thus, `path` can also be a URL to a file like
#' `"http://www.url.com/file.csv"`. When `path` points to a zip-compressed file,
#' and there are multiple files inside the zip-archive, then the first supported
#' file is extracted and loaded.
#'
#' @section General behaviour:
#' `data_read()` detects the appropriate `read_*()` function based on the
#' file-extension of the data file. Thus, in most cases it should be enough to
#' only specify the `path` argument. However, if more control is needed, all
#' arguments in `...` are passed down to the related `read_*()` function. The
#' same applies to `data_write()`, i.e. based on the file extension provided in
#' `path`, the appropriate `write_*()` function is used automatically.
#'
#' @section SPSS specific behaviour:
#' `data_read()` does *not* import user-defined ("tagged") `NA` values from
#' SPSS, i.e. argument `user_na` is always set to `FALSE` when importing SPSS
#' data with the **haven** package. Use `convert_to_na()` to define missing
#' values in the imported data, if necessary. Furthermore, `data_write()`
#' compresses SPSS files by default. If this causes problems with (older) SPSS
#' versions, use `compress = "none"`, for example
#' `data_write(data, "myfile.sav", compress = "none")`.
#'
#' @section Differences to other packages that read foreign data formats:
#' `data_read()` is most comparable to `rio::import()`. For data files from
#' SPSS, SAS or Stata, which support labelled data, variables are converted into
#' their most appropriate type. The major difference to `rio::import()` is for
#' data files from SPSS, SAS, or Stata, i.e. file types that support
#' *labelled data*. `data_read()` automatically converts fully labelled numeric
#' variables into factors, where imported value labels will be set as factor
#' levels. If a numeric variable has _no_ value labels or less value labels than
#' values, it is not converted to factor. In this case, value labels are
#' preserved as `"labels"` attribute. Character vectors are preserved. Use
#' `convert_factors = FALSE` to remove the automatic conversion of numeric
#' variables to factors.
#'
#' @export
data_read <- function(path,
path_catalog = NULL,
encoding = NULL,
convert_factors = TRUE,
verbose = TRUE,
...) {
# extract first valid file from zip-file
if (identical(.file_ext(path), "zip")) {
path <- .extract_zip(path)
}
# check for valid file type
file_type <- .file_ext(path)
if (!is.character(file_type) || file_type == "") {
insight::format_error(
"Could not detect file type. The `path` argument has no file extension.",
"Please provide a file path including extension, like \"myfile.csv\" or \"c:/Users/Default/myfile.sav\"."
)
}
# read data
out <- switch(file_type,
txt = ,
csv = .read_text(path, encoding, verbose, ...),
xls = ,
xlsx = .read_excel(path, encoding, verbose, ...),
sav = ,
por = .read_spss(path, encoding, convert_factors, verbose, ...),
dta = .read_stata(path, encoding, convert_factors, verbose, ...),
sas7bdat = .read_sas(path, path_catalog, encoding, convert_factors, verbose, ...),
.read_unknown(path, file_type, verbose, ...)
)
# tell user about empty columns
if (verbose) {
empty_cols <- empty_columns(out)
# only message if we actually have empty columns
if (length(empty_cols)) {
insight::format_alert(
sprintf("Following %i variables are empty:", length(empty_cols)),
text_concatenate(names(empty_cols)),
"\nUse `remove_empty_columns()` to remove them from the data frame."
)
}
}
out
}
# helper -----------------------
.file_ext <- function(x) {
pos <- regexpr("\\.([[:alnum:]]+)$", x)
ifelse(pos > -1L, tolower(substring(x, pos + 1L)), "")
}
.extract_zip <- function(path) {
files <- utils::unzip(path, list = TRUE)
files_ext <- vapply(files$Name, .file_ext, FUN.VALUE = character(1L))
supported_filetypes <- c("txt", "csv", "xls", "xlsx", "sav", "por", "dta")
dest <- files$Name[which(files_ext %in% supported_filetypes)]
if (length(dest) > 0) {
d <- tempfile()
dir.create(d)
utils::unzip(path, exdir = d)
path <- file.path(d, dest[1])
} else {
insight::format_error("The zip-file does not contain any supported file types.")
}
path
}
# process imported data from SPSS, SAS or Stata -----------------------
.post_process_imported_data <- function(x, convert_factors, verbose) {
# user may decide whether we automatically detect variable type or not
if (isTRUE(convert_factors)) {
if (verbose) {
msg <- "Variables where all values have associated labels are now converted into factors. If this is not intended, use `convert_factors = FALSE`." # nolint
insight::format_alert(msg)
}
x[] <- lapply(x, function(i) {
# only proceed if not all missing
if (!all(is.na(i))) {
# save labels
value_labels <- attr(i, "labels", exact = TRUE)
variable_labels <- attr(i, "label", exact = TRUE)
# filter, so only matching value labels remain
value_labels <- value_labels[value_labels %in% unique(i)]
# guess variable type
if (is.character(i)) {
# we need this to drop haven-specific class attributes
i <- as.character(i)
} else if (!is.null(value_labels) && length(value_labels) == insight::n_unique(i)) {
# if all values are labelled, we assume factor. Use labels as levels
if (is.numeric(i)) {
i <- factor(i, labels = names(value_labels))
} else {
i <- factor(as.character(i), labels = names(value_labels))
}
value_labels <- NULL
attr(i, "converted_to_factor") <- TRUE
} else {
# else, fall back to numeric or factor
i <- as.numeric(i)
}
# drop unused value labels
value_labels <- value_labels[value_labels %in% unique(i)]
if (length(value_labels) > 0L) {
attr(i, "labels") <- value_labels
}
# add back variable label
attr(i, "label") <- variable_labels
}
i
})
# tell user how many variables were converted
if (verbose) {
cnt <- sum(vapply(x, function(i) isTRUE(attributes(i)$converted_to_factor), TRUE))
msg <- sprintf("%i out of %i variables were fully labelled and converted into factors.", cnt, ncol(x))
insight::format_alert(msg)
}
} else {
# drop haven class attributes
x[] <- lapply(x, function(i) {
# save labels
class(i) <- setdiff(class(i), c("haven_labelled", "vctrs_vctr"))
i
})
}
class(x) <- "data.frame"
x
}
# read functions -----------------------
.read_spss <- function(path, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
out <- haven::read_sav(file = path, encoding = encoding, user_na = FALSE, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_stata <- function(path, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
out <- haven::read_dta(file = path, encoding = encoding, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_sas <- function(path, path_catalog, encoding, convert_factors, verbose, ...) {
insight::check_if_installed("haven", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
out <- haven::read_sas(data_file = path, catalog_file = path_catalog, encoding = encoding, ...)
.post_process_imported_data(out, convert_factors, verbose)
}
.read_excel <- function(path, encoding, verbose, ...) {
insight::check_if_installed("readxl", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
out <- readxl::read_excel(path, ...)
class(out) <- "data.frame"
out
}
.read_text <- function(path, encoding, verbose, ...) {
if (insight::check_if_installed("data.table", quietly = TRUE)) {
# set proper default encoding-value for fread
if (is.null(encoding)) {
encoding <- "unknown"
}
out <- data.table::fread(input = path, encoding = encoding, ...)
class(out) <- "data.frame"
return(out)
}
insight::check_if_installed("readr", reason = paste0("to read files of type '", .file_ext(path), "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
out <- readr::read_delim(path, ...)
class(out) <- "data.frame"
out
}
.read_unknown <- function(path, file_type, verbose, ...) {
insight::check_if_installed("rio", reason = paste0("to read files of type '", file_type, "'"))
if (verbose) {
insight::format_alert("Reading data...")
}
# set up arguments. for RDS, we set trust = TRUE, to avoid warnings
rio_args <- list(file = path)
# check if we have RDS, and if so, add trust = TRUE
if (file_type %in% c("rds", "rdata")) {
rio_args$trust <- TRUE
}
out <- do.call(rio::import, c(rio_args, list(...)))
# for "unknown" data formats (like .RDS), which still can be imported via
# "rio::import()", we must check whether we actually have a data frame or
# not. Else, tell user.
if (!is.data.frame(out)) {
tmp <- tryCatch(as.data.frame(out, stringsAsFactors = FALSE), error = function(e) NULL)
if (is.null(tmp)) {
if (verbose) {
insight::format_warning(
paste0("Imported file is no data frame, but of class \"", class(out)[1], "\"."),
"Returning file as is. Please check if importing this file was intended."
)
}
return(out)
}
out <- tmp
}
out
}
|