1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
#' @title Rescale Variables to a New Range
#' @name rescale
#'
#' @description
#' Rescale variables to a new range. Can also be used to reverse-score variables
#' (change the keying/scoring direction), or to expand a range.
#'
#' @inheritParams categorize
#' @inheritParams extract_column_names
#' @inheritParams standardize.data.frame
#' @param to Numeric vector of length 2 giving the new range that the variable
#' will have after rescaling. To reverse-score a variable, the range should
#' be given with the maximum value first. See examples.
#' @param multiply If not `NULL`, `to` is ignored and `multiply` will be used,
#' giving the factor by which the actual range of `x` should be expanded.
#' For example, if a vector ranges from 5 to 15 and `multiply = 1.1`, the current
#' range of 10 will be expanded by the factor of 1.1, giving a new range of
#' 11. Thus, the rescaled vector would range from 4.5 to 15.5.
#' @param add A vector of length 1 or 2. If not `NULL`, `to` is ignored and `add`
#' will be used, giving the amount by which the minimum and maximum of the
#' actual range of `x` should be expanded. For example, if a vector ranges from
#' 5 to 15 and `add = 1`, the range will be expanded from 4 to 16. If `add` is
#' of length 2, then the first value is used for the lower bound and the second
#' value for the upper bound.
#' @param range Initial (old) range of values. If `NULL`, will take the range of
#' the input vector (`range(x)`).
#' @param ... Arguments passed to or from other methods.
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @seealso See [makepredictcall.dw_transformer()] for use in model formulas.
#' @family transform utilities
#'
#' @return A rescaled object.
#'
#' @examples
#' rescale(c(0, 1, 5, -5, -2))
#' rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
#' rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))
#'
#' # Specify the "theoretical" range of the input vector
#' rescale(c(1, 3, 4), to = c(0, 40), range = c(0, 4))
#'
#' # Reverse-score a variable
#' rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
#' rescale(c(1, 2, 3, 4, 5), to = c(2, -2))
#'
#' # Data frames
#' head(rescale(iris, to = c(0, 1)))
#' head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))
#'
#' # One can specify a list of ranges
#' head(rescale(iris, to = list(
#' "Sepal.Length" = c(0, 1),
#' "Petal.Length" = c(-1, 0)
#' )))
#'
#' # "expand" ranges by a factor or a given value
#' x <- 5:15
#' x
#' # both will expand the range by 10%
#' rescale(x, multiply = 1.1)
#' rescale(x, add = 0.5)
#'
#' # expand range by different values
#' rescale(x, add = c(1, 3))
#'
#' # Specify list of multipliers
#' d <- data.frame(x = 5:15, y = 5:15)
#' rescale(d, multiply = list(x = 1.1, y = 0.5))
#' @export
rescale <- function(x, ...) {
UseMethod("rescale")
}
#' @rdname rescale
#' @export
change_scale <- function(x, ...) {
# Alias for rescale()
rescale(x, ...)
}
#' @export
rescale.default <- function(x, verbose = TRUE, ...) {
if (isTRUE(verbose)) {
insight::format_alert(
paste0("Variables of class `", class(x)[1], "` can't be rescaled and remain unchanged.")
)
}
x
}
#' @rdname rescale
#' @export
rescale.numeric <- function(x,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
verbose = TRUE,
...) {
if (is.null(to)) {
return(x)
}
# Warning if all NaNs
if (all(is.na(x))) {
return(x)
}
if (is.null(range)) {
range <- c(min(x, na.rm = TRUE), max(x, na.rm = TRUE))
}
# check if user specified "multiply" or "add", and then update "to"
to <- .update_to(x, to, multiply, add)
# called from "makepredictcal()"? Then we have additional arguments
dot_args <- list(...)
required_dot_args <- c("min_value", "max_value", "new_min", "new_max")
flag_predict <- FALSE
if (all(required_dot_args %in% names(dot_args))) {
# we gather informatiom about the original data, which is needed
# for "predict()" to work properly when "rescale()" is called
# in formulas on-the-fly, e.g. "lm(mpg ~ rescale(hp), data = mtcars)"
min_value <- dot_args$min_value
max_value <- dot_args$max_value
new_min <- dot_args$new_min
new_max <- dot_args$new_max
flag_predict <- TRUE
} else {
min_value <- ifelse(is.na(range[1]), min(x, na.rm = TRUE), range[1])
max_value <- ifelse(is.na(range[2]), max(x, na.rm = TRUE), range[2])
new_min <- ifelse(is.na(to[1]), min_value, to[1])
new_max <- ifelse(is.na(to[2]), max_value, to[2])
}
# Warning if only one value
if (!flag_predict && insight::has_single_value(x) && is.null(range)) {
if (verbose) {
insight::format_warning(
"A `range` must be provided for data with only one unique value."
)
}
return(x)
}
out <- as.vector((new_max - new_min) / (max_value - min_value) * (x - min_value) + new_min)
attr(out, "min_value") <- min_value
attr(out, "max_value") <- max_value
attr(out, "new_min") <- new_min
attr(out, "new_max") <- new_max
attr(out, "range_difference") <- max_value - min_value
attr(out, "to_range") <- c(new_min, new_max)
# don't add attribute when we call data frame methods
if (!isFALSE(dot_args$add_transform_class)) {
class(out) <- c("dw_transformer", class(out))
}
out
}
#' @export
rescale.grouped_df <- function(x,
select = NULL,
exclude = NULL,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...) {
info <- attributes(x)
grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
remove_group_var = TRUE,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_r",
preserve_value_labels = TRUE
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
x <- as.data.frame(x)
for (rows in grps) {
x[rows, ] <- rescale(
x[rows, , drop = FALSE],
select = select,
exclude = exclude,
to = to,
multiply = multiply,
add = add,
range = range,
append = FALSE, # need to set to FALSE here, else variable will be doubled
add_transform_class = FALSE,
...
)
}
# set back class, so data frame still works with dplyr
attributes(x) <- utils::modifyList(info, attributes(x))
x
}
#' @rdname rescale
#' @export
rescale.data.frame <- function(x,
select = NULL,
exclude = NULL,
to = c(0, 100),
multiply = NULL,
add = NULL,
range = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE,
...) {
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# when we append variables, we call ".process_append()", which will
# create the new variables and updates "select", so new variables are processed
if (!isFALSE(append)) {
# process arguments
my_args <- .process_append(
x,
select,
append,
append_suffix = "_r"
)
# update processed arguments
x <- my_args$x
select <- my_args$select
}
# Transform the range so that it is a list now
if (!is.null(range) && !is.list(range)) {
range <- stats::setNames(rep(list(range), length(select)), select)
}
# Transform the 'to' so that it is a list now
if (!is.list(to)) {
to <- stats::setNames(rep(list(to), length(select)), select)
}
# Transform the 'multiply' so that it is a list now
if (!is.null(multiply) && !is.list(multiply)) {
multiply <- stats::setNames(rep(list(multiply), length(select)), select)
}
# Transform the 'add' so that it is a list now
if (!is.null(add) && !is.list(add)) {
add <- stats::setNames(rep(list(add), length(select)), select)
}
# update "to" if user specified "multiply" or "add"
to[] <- lapply(names(to), function(i) {
.update_to(x[[i]], to[[i]], multiply[[i]], add[[i]])
})
x[select] <- as.data.frame(sapply(select, function(n) {
rescale(x[[n]], to = to[[n]], range = range[[n]], add_transform_class = FALSE)
}, simplify = FALSE))
x
}
# helper ----------------------------------------------------------------------
# expand the new target range by multiplying or adding
.update_to <- function(x, to, multiply, add) {
# check if user specified "multiply" or "add", and if not, return "to"
if (is.null(multiply) && is.null(add)) {
return(to)
}
# only one of "multiply" or "add" can be specified
if (!is.null(multiply) && !is.null(add)) {
insight::format_error("Only one of `multiply` or `add` can be specified.")
}
# multiply? If yes, calculate the "add" value
if (!is.null(multiply)) {
# check for correct length
if (length(multiply) > 1) {
insight::format_error("The length of `multiply` must be 1.")
}
add <- (diff(range(x, na.rm = TRUE)) * (multiply - 1)) / 2
}
# add?
if (!is.null(add)) {
# add must be of length 1 or 2
if (length(add) > 2) {
insight::format_error("The length of `add` must be 1 or 2.")
}
# if add is of length 2, then the first value is used for the lower bound
# and the second value for the upper bound
if (length(add) == 2) {
add_low <- add[1]
add_high <- add[2]
} else {
add_low <- add_high <- add
}
to <- c(min(x, na.rm = TRUE) - add_low, max(x, na.rm = TRUE) + add_high)
}
to
}
|