File: data_reverse.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (300 lines) | stat: -rw-r--r-- 8,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#' Reverse-Score Variables
#'
#' Reverse-score variables (change the keying/scoring direction).
#'
#' @param range Range of values that is used as reference for reversing the
#'   scale. For numeric variables, can be `NULL` or a numeric vector of length
#'   two, indicating the lowest and highest value of the reference range. If
#'   `NULL`, will take the range of the input vector (`range(x)`). For factors,
#'   `range` can be `NULL`, a numeric vector of length two, or a (numeric)
#'   vector of at least the same length as factor levels (i.e. must be equal
#'   to or larger than `nlevels(x)`). Note that providing a `range` for factors
#'   usually only makes sense when factor levels are numeric, not characters.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams categorize
#' @inheritParams extract_column_names
#'
#' @inheritSection center Selection of variables - the `select` argument
#'
#' @examples
#' reverse(c(1, 2, 3, 4, 5))
#' reverse(c(-2, -1, 0, 2, 1))
#'
#' # Specify the "theoretical" range of the input vector
#' reverse(c(1, 3, 4), range = c(0, 4))
#'
#' # Factor variables
#' reverse(factor(c(1, 2, 3, 4, 5)))
#' reverse(factor(c(1, 2, 3, 4, 5)), range = 0:10)
#'
#' # Data frames
#' head(reverse(iris))
#' head(reverse(iris, select = "Sepal.Length"))
#'
#' @return A reverse-scored object.
#'
#' @family transform utilities
#'
#' @inherit data_rename seealso
#'
#' @export
reverse <- function(x, ...) {
  UseMethod("reverse")
}


#' @rdname reverse
#' @export
reverse_scale <- reverse


#' @export
reverse.default <- function(x, verbose = TRUE, ...) {
  if (isTRUE(verbose)) {
    insight::format_alert(
      paste0(
        "Variables of class '",
        class(x)[1],
        "' can't be recoded and remain unchanged."
      )
    )
  }

  x
}


#' @rdname reverse
#' @export
reverse.numeric <- function(x,
                            range = NULL,
                            verbose = TRUE,
                            ...) {
  # Warning if all NaNs
  if (all(is.na(x))) {
    return(x)
  }

  # Warning if only one value
  if (insight::has_single_value(x) && is.null(range)) {
    if (verbose) {
      insight::format_warning("A `range` must be provided for data with only one unique value.")
    }
    return(x)
  }

  # no missing values allowed
  if (anyNA(range)) {
    insight::format_error("`range` is not allowed to have missing values.")
  }

  if (is.null(range)) {
    range <- c(min(x, na.rm = TRUE), max(x, na.rm = TRUE))
  }

  # old minimum and maximum
  min_value <- min(range)
  max_value <- max(range)

  # check if a valid range (i.e. vector of length 2) is provided
  if (length(range) > 2) {
    insight::format_error(
      "`range` must be a numeric vector of length two, indicating lowest and highest value of the required range.",
      sprintf("Did you want to provide `range = c(%g, %g)`?", min_value, max_value)
    )
  }

  new_min <- max_value
  new_max <- min_value

  out <- as.vector((new_max - new_min) / (max_value - min_value) * (x - min_value) + new_min)

  # labelled data?
  out <- .set_back_labels(out, x, reverse_values = TRUE)
  out
}


#' @export
reverse.factor <- function(x, range = NULL, verbose = TRUE, ...) {
  # Warning if all NaNs
  if (all(is.na(x))) {
    return(x)
  }

  # Warning if only one value
  if (insight::has_single_value(x) && is.null(range)) {
    if (verbose) {
      insight::format_warning("A `range` must be provided for data with only one unique value.")
    }
    return(x)
  }

  # save for later use
  original_x <- x

  if (is.null(range)) {
    old_levels <- levels(x)
  } else {
    # no missing values allowed
    if (anyNA(range)) {
      insight::format_error("`range` is not allowed to have missing values.")
    }
    range_ok <- TRUE
    # if we have a vector of length 2 for range, and more factor levels,
    # we assume `range` indicates minimum and maximum of range values
    if (length(range) == 2 && nlevels(droplevels(x)) > 2) {
      if (is.numeric(range)) {
        range <- min(range):max(range)
      } else {
        # if range is of length 2, and we have more than 2 number of levels,
        # range must be numeric to indicate minima and maxima. if not, stop.
        range_ok <- FALSE
      }
    }
    if (length(range) > 2 && length(range) < nlevels(droplevels(x))) {
      # if range has more than two values, but fewer values than number of
      # factor levels, we cannot associate the reversed scale, so stop
      range_ok <- FALSE
    }
    if (!range_ok) {
      insight::format_error(
        "`range` must be one of the following:",
        "- a numeric vector of length two, indicating lowest and highest value of the required range,",
        "- a vector (numeric or character) of values with at least as many values as number of levels in `x`,",
        "- or `NULL`."
      )
    }
    # check if no or not all old levels are in new range
    if (verbose) {
      if (!any(levels(x) %in% as.character(range))) {
        insight::format_warning(
          "No current factor level is included in `range`.",
          "Returned factor will only contain missing values."
        )
      } else if (!all(levels(x) %in% as.character(range))) {
        insight::format_warning(
          "Not all current factor levels are included in `range`.",
          "Returned factor will contain missing values."
        )
      }
    }
    old_levels <- range
    x <- factor(x, levels = range)
  }

  int_x <- as.integer(x)
  rev_x <- reverse(int_x, range = c(1, length(old_levels)))
  x <- factor(rev_x, levels = seq_len(length(old_levels)), labels = old_levels)

  # labelled data?
  x <- .set_back_labels(x, original_x, reverse_values = TRUE)

  x
}


#' @export
reverse.grouped_df <- function(x,
                               select = NULL,
                               exclude = NULL,
                               range = NULL,
                               append = FALSE,
                               ignore_case = FALSE,
                               regex = FALSE,
                               verbose = FALSE,
                               ...) {
  info <- attributes(x)


  grps <- attr(x, "groups", exact = TRUE)[[".rows"]]

  # evaluate arguments
  select <- .select_nse(select,
    x,
    exclude,
    ignore_case,
    regex = regex,
    remove_group_var = TRUE,
    verbose = verbose
  )

  # when we append variables, we call ".process_append()", which will
  # create the new variables and updates "select", so new variables are processed
  if (!isFALSE(append)) {
    # process arguments
    arguments <- .process_append(
      x,
      select,
      append,
      append_suffix = "_r",
      preserve_value_labels = TRUE
    )
    # update processed arguments
    x <- arguments$x
    select <- arguments$select
  }

  x <- as.data.frame(x)
  for (rows in grps) {
    x[rows, ] <- reverse(
      x[rows, , drop = FALSE],
      select = select,
      exclude = exclude,
      range = range,
      append = FALSE, # need to set to FALSE here, else variable will be doubled
      ...
    )
  }
  # set back class, so data frame still works with dplyr
  attributes(x) <- utils::modifyList(info, attributes(x))
  x
}


#' @rdname reverse
#' @export
reverse.data.frame <- function(x,
                               select = NULL,
                               exclude = NULL,
                               range = NULL,
                               append = FALSE,
                               ignore_case = FALSE,
                               regex = FALSE,
                               verbose = FALSE,
                               ...) {
  # evaluate arguments
  select <- .select_nse(select,
    x,
    exclude,
    ignore_case,
    regex = regex,
    verbose = verbose
  )

  # when we append variables, we call ".process_append()", which will
  # create the new variables and updates "select", so new variables are processed
  if (!isFALSE(append)) {
    # process arguments
    arguments <- .process_append(
      x,
      select,
      append,
      append_suffix = "_r",
      preserve_value_labels = TRUE
    )
    # update processed arguments
    x <- arguments$x
    select <- arguments$select
  }

  # Transform the range so that it is a list now
  if (!is.null(range) && !is.list(range)) {
    range <- stats::setNames(rep(list(range), length(select)), select)
  }

  x[select] <- lapply(select, function(n) {
    reverse(x[[n]], range = range[[n]])
  })
  x
}