1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
#' @title Separate single variable into multiple variables
#' @name data_separate
#'
#' @description
#' Separates a single variable into multiple new variables.
#'
#' @param data A data frame.
#' @param new_columns The names of the new columns, as character vector. If
#' more than one variable was selected (in `select`), the new names are prefixed
#' with the name of the original column. `new_columns` can also be a list of
#' (named) character vectors when multiple variables should be separated. See
#' 'Examples'.
#' @param separator Separator between columns. Can be a character vector, which
#' is then treated as regular expression, or a numeric vector that indicates at
#' which positions the string values will be split.
#' @param append Logical, if `FALSE` (default), removes original columns that
#' were separated. If `TRUE`, all columns are preserved and the new columns are
#' appended to the data frame.
#' @param guess_columns If `new_columns` is not given, the required number of
#' new columns is guessed based on the results of value splitting. For example,
#' if a variable is split into three new columns, this will be considered as
#' the required number of new columns, and columns are named `"split_1"`,
#' `"split_2"` and `"split_3"`. When values from a variable are split into
#' different amount of new columns, the `guess_column` can be either `"mode"`
#' (number of new columns is based on the most common number of splits), `"min"`
#' or `"max"` to use the minimum resp. maximum number of possible splits as
#' required number of columns.
#' @param fill How to deal with values that return fewer new columns after
#' splitting? Can be `"left"` (fill missing columns from the left with `NA`),
#' `"right"` (fill missing columns from the right with `NA`) or `"value_left"`
#' or `"value_right"` to fill missing columns from left or right with the
#' left-most or right-most values.
#' @param extra How to deal with values that return too many new columns after
#' splitting? Can be `"drop_left"` or `"drop_right"` to drop the left-most or
#' right-most values, or `"merge_left"` or `"merge_right"` to merge the left-
#' or right-most value together, and keeping all remaining values as is.
#' @param merge_multiple Logical, if `TRUE` and more than one variable is selected
#' for separating, new columns can be merged. Value pairs of all split variables
#' are merged.
#' @param merge_separator Separator string when `merge_multiple = TRUE`. Defines
#' the string that is used to merge values together.
#' @param convert_na Logical, if `TRUE`, character `"NA"` values are converted
#' into real `NA` values.
#' @param ... Currently not used.
#' @inheritParams extract_column_names
#'
#' @seealso [`data_unite()`]
#'
#' @return A data frame with the newly created variable(s), or - when `append = TRUE` -
#' `data` including new variables.
#'
#' @examples
#' # simple case
#' d <- data.frame(
#' x = c("1.a.6", "2.b.7", "3.c.8"),
#' stringsAsFactors = FALSE
#' )
#' d
#' data_separate(d, new_columns = c("a", "b", "c"))
#'
#' # guess number of columns
#' d <- data.frame(
#' x = c("1.a.6", NA, "2.b.6.7", "3.c", "x.y.z"),
#' stringsAsFactors = FALSE
#' )
#' d
#' data_separate(d, guess_columns = "mode")
#'
#' data_separate(d, guess_columns = "max")
#'
#' # drop left-most column
#' data_separate(d, guess_columns = "mode", extra = "drop_left")
#'
#' # merge right-most column
#' data_separate(d, guess_columns = "mode", extra = "merge_right")
#'
#' # fill columns with fewer values with left-most values
#' data_separate(d, guess_columns = "mode", fill = "value_left")
#'
#' # fill and merge
#' data_separate(
#' d,
#' guess_columns = "mode",
#' fill = "value_left",
#' extra = "merge_right"
#' )
#'
#' # multiple columns to split
#' d <- data.frame(
#' x = c("1.a.6", "2.b.7", "3.c.8"),
#' y = c("x.y.z", "10.11.12", "m.n.o"),
#' stringsAsFactors = FALSE
#' )
#' d
#' # split two columns, default column names
#' data_separate(d, guess_columns = "mode")
#'
#' # split into new named columns, repeating column names
#' data_separate(d, new_columns = c("a", "b", "c"))
#'
#' # split selected variable new columns
#' data_separate(d, select = "y", new_columns = c("a", "b", "c"))
#'
#' # merge multiple split columns
#' data_separate(
#' d,
#' new_columns = c("a", "b", "c"),
#' merge_multiple = TRUE
#' )
#'
#' # merge multiple split columns
#' data_separate(
#' d,
#' new_columns = c("a", "b", "c"),
#' merge_multiple = TRUE,
#' merge_separator = "-"
#' )
#'
#' # separate multiple columns, give proper column names
#' d_sep <- data.frame(
#' x = c("1.a.6", "2.b.7.d", "3.c.8", "5.j"),
#' y = c("m.n.99.22", "77.f.g.34", "44.9", NA),
#' stringsAsFactors = FALSE
#' )
#'
#' data_separate(
#' d_sep,
#' select = c("x", "y"),
#' new_columns = list(
#' x = c("A", "B", "C"), # separate "x" into three columns
#' y = c("EE", "FF", "GG", "HH") # separate "y" into four columns
#' ),
#' verbose = FALSE
#' )
#' @export
data_separate <- function(data,
select = NULL,
new_columns = NULL,
separator = "[^[:alnum:]]+",
guess_columns = NULL,
merge_multiple = FALSE,
merge_separator = "",
fill = "right",
extra = "drop_right",
convert_na = TRUE,
exclude = NULL,
append = FALSE,
ignore_case = FALSE,
verbose = TRUE,
regex = FALSE,
...) {
# we need at least one explicit choice for either `new_columns` or `guess_columns`
if (is.null(new_columns) && is.null(guess_columns)) {
insight::format_error("Cannot separate values. Either `new_columns` or `guess_columns` must be provided.")
}
# in case user did not provide names of new columns, we can try
# to guess number of columns per variable
guess_columns <- match.arg(guess_columns, choices = c("min", "max", "mode"))
# make sure we have valid options for fill and extra
fill <- match.arg(fill, choices = c("left", "right", "value_left", "value_right"))
extra <- match.arg(extra, choices = c("drop_left", "drop_right", "merge_left", "merge_right"))
# evaluate select/exclude, may be select-helpers
select <- .select_nse(select,
data,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# make new_columns as list, this works with single and multiple columns
if (!is.null(new_columns) && !is.list(new_columns)) {
new_columns <- rep(list(new_columns), times = length(select))
# if we have multiple columns that were separated, we avoid duplicated
# column names of created variables by appending name of original column
# however, we don't have duplicated column names when we merge them together
# so don't create new column names when "merge_multiple" is FALSE.
make_unique_colnames <- length(select) > 1 && !merge_multiple
} else {
# we don't want to create own unique column names when user explicitly
# provided column names as a list, i.e. column names for each separated
# variable
make_unique_colnames <- FALSE
}
# make sure list of new column names is named
if (!is.null(new_columns) && is.null(names(new_columns))) {
names(new_columns) <- select
}
# iterate columns that should be split
split_data <- lapply(select, function(sep_column) {
# do we have known number of columns?
if (is.null(new_columns)) {
n_columns <- NULL
} else {
n_columns <- length(new_columns[[sep_column]])
}
# make sure we have a character that we can split
x <- data[[sep_column]]
if (!is.character(x)) {
x <- as.character(x)
}
# separate column into multiple strings
if (is.numeric(separator)) {
maxlen <- max(nchar(x), na.rm = TRUE)
starts <- c(0, separator)
ends <- c(separator - 1, maxlen)
separated_columns <- lapply(seq_along(starts), function(i) {
substr(x, starts[i], ends[i])
})
separated_columns <- as.data.frame(
do.call(rbind, separated_columns),
stringsAsFactors = FALSE
)
} else {
separated_columns <- strsplit(x, separator, perl = TRUE)
}
# how many new columns do we need?
if (is.null(n_columns)) {
# lengths of all split strings
l <- lengths(separated_columns)
# but without NA values
l <- l[!vapply(l, function(i) all(is.na(i)), TRUE)]
# define number of new columns, based on user-choice
n_cols <- switch(guess_columns,
min = min(l, na.rm = TRUE),
max = max(l, na.rm = TRUE),
mode = distribution_mode(l),
)
# tell user
if (verbose && insight::n_unique(l) != 1 && !is.numeric(separator)) {
insight::format_alert(paste0(
"Column `", sep_column, "` had different number of values after splitting. Variable was split into ",
n_cols, " column", ifelse(n_cols > 1, "s", ""), "."
))
}
} else {
# else, if we know number of columns, use that number
n_cols <- n_columns
}
# main task here - fill or drop values for all columns
separated_columns <- tryCatch(
.fix_separated_columns(separated_columns, fill, extra, n_cols, sep_column, verbose),
error = function(e) NULL
)
# catch error
if (is.null(separated_columns)) {
insight::format_error(
"Something went wrong. Probably the number of provided column names did not match number of newly created columns?" # nolint
)
}
# bind separated columns into data frame and set column names
out <- as.data.frame(do.call(rbind, separated_columns))
# if no column names provided, use standard names
if (is.null(new_columns[[sep_column]])) {
new_column_names <- paste0(sep_column, "_", seq_along(out))
} else if (make_unique_colnames) {
# if we have multiple columns that were separated, we avoid duplicated
# column names of created variables by appending name of original column
new_column_names <- paste0(sep_column, "_", new_columns[[sep_column]])
} else {
new_column_names <- new_columns[[sep_column]]
}
colnames(out) <- new_column_names
out
})
# any split performed?
if (all(lengths(split_data) == 1)) {
if (verbose) {
insight::format_alert("Separator probably not found. No values were split. Returning original data.")
}
return(data)
}
# final preparation, bind or merge columns, make unique columm names
if (isTRUE(merge_multiple) && length(split_data) > 1) {
# we merge all split columns, which are currently saved as list
# of data frames, together into one data frame
for (i in 2:length(split_data)) {
for (j in seq_along(split_data[[1]])) {
split_data[[1]][[j]] <- gsub(" ", "",
paste(
split_data[[1]][[j]],
split_data[[i]][[j]],
sep = merge_separator
),
fixed = TRUE
)
}
}
split_data <- split_data[[1]]
} else {
# bind all columns
split_data <- do.call(cbind, split_data)
}
# convert "NA" strings into real NA?
if (convert_na) {
split_data[] <- lapply(split_data, function(i) {
i[i == "NA"] <- NA_character_
i
})
}
data <- cbind(data, split_data)
if (!isTRUE(append)) {
data[select] <- NULL
}
# fin
data
}
#' @keywords internal
.fix_separated_columns <- function(separated_columns, fill, extra, n_cols, sep_column, verbose = TRUE) {
warn_extra <- warn_fill <- FALSE
for (sc in seq_along(separated_columns)) {
i <- separated_columns[[sc]]
# determine number of values in separated column
n_values <- length(i)
if (all(is.na(i))) {
# we have NA values - so fill everything with NA
out <- rep(NA_character_, times = n_cols)
} else if (n_values > n_cols) {
# we have more values than required - drop extra columns
out <- switch(extra,
drop_left = i[(n_values - n_cols + 1):n_values],
drop_right = i[1:n_cols],
merge_left = {
tmp <- paste(i[1:(n_values - n_cols + 1)], collapse = " ")
c(tmp, i[(n_values - n_cols + 2):n_values])
},
{
tmp <- i[1:(n_cols - 1)]
c(tmp, paste(i[n_cols:n_values], collapse = " "))
}
)
warn_extra <- TRUE
} else if (n_values < n_cols) {
# we have fewer values than required - fill columns
out <- switch(fill,
left = c(rep(NA_character_, times = n_cols - n_values), i),
right = c(i, rep(NA_character_, times = n_cols - n_values)),
value_left = c(rep(i[1], times = n_cols - n_values), i),
c(i, rep(i[length(i)], times = n_cols - n_values))
)
warn_fill <- TRUE
} else {
out <- i
}
separated_columns[[sc]] <- out
}
if (verbose) {
if (warn_extra) {
insight::format_alert(paste0(
"`", sep_column, "`",
" returned more columns than expected after splitting. ",
switch(extra,
drop_left = "Left-most columns have been dropped.",
drop_right = "Right-most columns have been dropped.",
merge_left = "Left-most columns have been merged together.",
merge_right = "Right-most columns have been merged together."
)
))
}
if (warn_fill) {
insight::format_alert(paste0(
"`", sep_column, "`",
"returned fewer columns than expected after splitting. ",
switch(fill,
left = "Left-most columns were filled with `NA`.",
right = "Right-most columns were filled with `NA`.",
value_left = "Left-most columns were filled with first value.",
value_right = "Right-most columns were filled with last value."
)
))
}
}
separated_columns
}
|