1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
#' @title Create frequency and crosstables of variables
#' @name data_tabulate
#'
#' @description This function creates frequency or crosstables of variables,
#' including the number of levels/values as well as the distribution of raw,
#' valid and cumulative percentages. For crosstables, row, column and cell
#' percentages can be calculated.
#'
#' @param x A (grouped) data frame, a vector or factor.
#' @param by Optional vector or factor. If supplied, a crosstable is created.
#' If `x` is a data frame, `by` can also be a character string indicating the
#' name of a variable in `x`.
#' @param drop_levels Logical, if `FALSE`, factor levels that do not occur in
#' the data are included in the table (with frequency of zero), else unused
#' factor levels are dropped from the frequency table.
#' @param name Optional character string, which includes the name that is used
#' for printing.
#' @param remove_na Logical, if `FALSE`, missing values are included in the
#' frequency or crosstable, else missing values are omitted.
#' @param collapse Logical, if `TRUE` collapses multiple tables into one larger
#' table for printing. This affects only printing, not the returned object.
#' @param weights Optional numeric vector of weights. Must be of the same length
#' as `x`. If `weights` is supplied, weighted frequencies are calculated.
#' @param proportions Optional character string, indicating the type of
#' percentages to be calculated. Only applies to crosstables, i.e. when `by` is
#' not `NULL`. Can be `"row"` (row percentages), `"column"` (column percentages)
#' or `"full"` (to calculate relative frequencies for the full table).
#' @param ... not used.
#' @inheritParams extract_column_names
#'
#' @details
#' There is an `as.data.frame()` method, to return the frequency tables as a
#' data frame. The structure of the returned object is a nested data frame,
#' where the first column contains name of the variable for which frequencies
#' were calculated, and the second column is a list column that contains the
#' frequency tables as data frame. See 'Examples'.
#'
#' @section Crosstables:
#' If `by` is supplied, a crosstable is created. The crosstable includes `<NA>`
#' (missing) values by default. The first column indicates values of `x`, the
#' first row indicates values of `by` (including missing values). The last row
#' and column contain the total frequencies for each row and column, respectively.
#' Setting `remove_na = FALSE` will omit missing values from the crosstable.
#' Setting `proportions` to `"row"` or `"column"` will add row or column
#' percentages. Setting `proportions` to `"full"` will add relative frequencies
#' for the full table.
#'
#' @note
#' There are `print_html()` and `print_md()` methods available for printing
#' frequency or crosstables in HTML and markdown format, e.g.
#' `print_html(data_tabulate(x))`. The `print()` method for text outputs passes
#' arguments in `...` to [`insight::export_table()`].
#'
#' @return A data frame, or a list of data frames, with one frequency table
#' as data frame per variable.
#'
#' @examplesIf requireNamespace("poorman")
#' # frequency tables -------
#' # ------------------------
#' data(efc)
#'
#' # vector/factor
#' data_tabulate(efc$c172code)
#'
#' # drop missing values
#' data_tabulate(efc$c172code, remove_na = TRUE)
#'
#' # data frame
#' data_tabulate(efc, c("e42dep", "c172code"))
#'
#' # grouped data frame
#' suppressPackageStartupMessages(library(poorman, quietly = TRUE))
#' efc %>%
#' group_by(c172code) %>%
#' data_tabulate("e16sex")
#'
#' # collapse tables
#' efc %>%
#' group_by(c172code) %>%
#' data_tabulate("e16sex", collapse = TRUE)
#'
#' # for larger N's (> 100000), a big mark is automatically added
#' set.seed(123)
#' x <- sample(1:3, 1e6, TRUE)
#' data_tabulate(x, name = "Large Number")
#'
#' # to remove the big mark, use "print(..., big_mark = "")"
#' print(data_tabulate(x), big_mark = "")
#'
#' # weighted frequencies
#' set.seed(123)
#' efc$weights <- abs(rnorm(n = nrow(efc), mean = 1, sd = 0.5))
#' data_tabulate(efc$e42dep, weights = efc$weights)
#'
#' # crosstables ------
#' # ------------------
#'
#' # add some missing values
#' set.seed(123)
#' efc$e16sex[sample.int(nrow(efc), 5)] <- NA
#'
#' data_tabulate(efc, "c172code", by = "e16sex")
#'
#' # add row and column percentages
#' data_tabulate(efc, "c172code", by = "e16sex", proportions = "row")
#' data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")
#'
#' # omit missing values
#' data_tabulate(
#' efc$c172code,
#' by = efc$e16sex,
#' proportions = "column",
#' remove_na = TRUE
#' )
#'
#' # round percentages
#' out <- data_tabulate(efc, "c172code", by = "e16sex", proportions = "column")
#' print(out, digits = 0)
#'
#' # coerce to data frames
#' result <- data_tabulate(efc, "c172code", by = "e16sex")
#' as.data.frame(result)
#' as.data.frame(result)$table
#' as.data.frame(result, add_total = TRUE)$table
#' @export
data_tabulate <- function(x, ...) {
UseMethod("data_tabulate")
}
#' @rdname data_tabulate
#' @export
data_tabulate.default <- function(x,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
name = NULL,
verbose = TRUE,
...) {
# save label attribute, before it gets lost...
var_label <- attr(x, "label", exact = TRUE)
# save and fix variable name, check for grouping variable
obj_name <- tryCatch(insight::safe_deparse(substitute(x)), error = function(e) NULL)
if (identical(obj_name, "x[[i]]")) {
obj_name <- name
}
group_variable <- list(...)$group_variable
# check whether levels not present in data should be shown or not
if (is.factor(x) && isTRUE(drop_levels)) {
x <- droplevels(x)
}
# validate "weights"
weights <- .validate_table_weights(weights, x, weights_expression = insight::safe_deparse(substitute(weights)))
# we go into another function for crosstables here...
if (!is.null(by)) {
by <- .validate_by(by, x)
return(.crosstable(
x,
by = by,
weights = weights,
remove_na = remove_na,
proportions = proportions,
obj_name = obj_name,
group_variable = group_variable
))
}
# frequency table
if (is.null(weights)) {
if (remove_na) {
# we have a `.default` and a `.data.frame` method for `data_tabulate()`.
# since this is the default, `x` can be an object which cannot be used
# with `table()`, that's why we add `tryCatch()` here. Below we give an
# informative error message for non-supported objects.
freq_table <- tryCatch(table(x), error = function(e) NULL)
} else {
freq_table <- tryCatch(table(addNA(x)), error = function(e) NULL)
}
} else if (remove_na) {
# weighted frequency table, excluding NA
freq_table <- tryCatch(
stats::xtabs(
weights ~ x,
data = data.frame(weights = weights, x = x),
na.action = stats::na.omit,
addNA = FALSE
),
error = function(e) NULL
)
} else {
# weighted frequency table, including NA
freq_table <- tryCatch(
stats::xtabs(
weights ~ x,
data = data.frame(weights = weights, x = addNA(x)),
na.action = stats::na.pass,
addNA = TRUE
),
error = function(e) NULL
)
}
if (is.null(freq_table)) {
insight::format_warning(paste0("Can't compute frequency tables for objects of class `", class(x)[1], "`."))
return(NULL)
}
# create data frame with freq table and cumulative percentages etc.
out <- data_rename(data.frame(freq_table, stringsAsFactors = FALSE),
replacement = c("Value", "N")
)
# we want to round N for weighted frequencies
if (!is.null(weights)) {
out$N <- round(out$N)
}
out$`Raw %` <- 100 * out$N / sum(out$N)
# if we have missing values, we add a row with NA
if (remove_na) {
out$`Valid %` <- 100 * out$N / sum(out$N)
valid_n <- sum(out$N, na.rm = TRUE)
} else {
out$`Valid %` <- c(100 * out$N[-nrow(out)] / sum(out$N[-nrow(out)]), NA)
valid_n <- sum(out$N[-length(out$N)], na.rm = TRUE)
}
out$`Cumulative %` <- cumsum(out$`Valid %`)
# add information about variable/group names
if (!is.null(obj_name)) {
if (is.null(group_variable)) {
var_info <- data.frame(Variable = obj_name, stringsAsFactors = FALSE)
} else {
var_info <- data.frame(
Variable = obj_name,
Group = toString(lapply(colnames(group_variable), function(i) {
sprintf("%s (%s)", i, group_variable[[i]])
})),
stringsAsFactors = FALSE
)
}
out <- cbind(var_info, out)
}
# save information
attr(out, "type") <- .variable_type(x)
attr(out, "varname") <- name
attr(out, "label") <- var_label
attr(out, "object") <- obj_name
attr(out, "group_variable") <- group_variable
attr(out, "duplicate_varnames") <- duplicated(out$Variable)
attr(out, "weights") <- weights
attr(out, "total_n") <- sum(out$N, na.rm = TRUE)
attr(out, "valid_n") <- valid_n
class(out) <- c("datawizard_table", "data.frame")
out
}
#' @rdname data_tabulate
#' @export
data_tabulate.data.frame <- function(x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
by = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
proportions = NULL,
collapse = FALSE,
verbose = TRUE,
...) {
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
# validate "by"
by <- .validate_by(by, x)
# validate "weights"
weights <- .validate_table_weights(weights, x)
out <- lapply(select, function(i) {
data_tabulate(
x[[i]],
by = by,
proportions = proportions,
drop_levels = drop_levels,
weights = weights,
remove_na = remove_na,
name = i,
verbose = verbose,
...
)
})
if (is.null(by)) {
class(out) <- c("datawizard_tables", "list")
} else {
class(out) <- c("datawizard_crosstabs", "list")
}
attr(out, "collapse") <- isTRUE(collapse)
attr(out, "is_weighted") <- !is.null(weights)
out
}
#' @export
data_tabulate.grouped_df <- function(x,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
by = NULL,
proportions = NULL,
drop_levels = FALSE,
weights = NULL,
remove_na = FALSE,
collapse = FALSE,
verbose = TRUE,
...) {
grps <- attr(x, "groups", exact = TRUE)
group_variables <- data_remove(grps, ".rows")
grps <- grps[[".rows"]]
# evaluate arguments
select <- .select_nse(select,
x,
exclude,
ignore_case,
regex = regex,
verbose = verbose
)
x <- as.data.frame(x)
out <- list()
for (i in seq_along(grps)) {
rows <- grps[[i]]
# save information about grouping factors
if (is.null(group_variables)) {
group_variable <- NULL
} else {
group_variable <- group_variables[i, , drop = FALSE]
}
out <- c(out, data_tabulate(
data_filter(x, rows),
select = select,
exclude = exclude,
ignore_case = ignore_case,
verbose = verbose,
drop_levels = drop_levels,
weights = weights,
remove_na = remove_na,
by = by,
proportions = proportions,
group_variable = group_variable,
...
))
}
if (is.null(by)) {
class(out) <- c("datawizard_tables", "list")
} else {
class(out) <- c("datawizard_crosstabs", "list")
}
attr(out, "collapse") <- isTRUE(collapse)
attr(out, "is_weighted") <- !is.null(weights)
out
}
# methods --------------------
#' @importFrom insight print_html
#' @export
insight::print_html
#' @importFrom insight print_md
#' @export
insight::print_md
#' @rdname data_tabulate
#' @param add_total For crosstables (i.e. when `by` is not `NULL`), a row and
#' column with the total N values are added to the data frame. `add_total` has
#' no effect in `as.data.frame()` for simple frequency tables.
#' @inheritParams base::as.data.frame
#' @export
as.data.frame.datawizard_tables <- function(x,
row.names = NULL,
optional = FALSE,
...,
stringsAsFactors = FALSE,
add_total = FALSE) {
# extract variables of frequencies
selected_vars <- unlist(lapply(x, function(i) attributes(i)$varname))
# coerce to data frame, remove rownames
data_frames <- lapply(x, function(i) {
# the `format()` methods for objects returned by `data_tabulate()` call
# `as.data.frame()` - we have to pay attention to avoid infinite iterations
# here. At the moment, this is no problem, as objects we have at this stage
# are of class "datawizard_table" or "datawizard_crosstab", while this
# `as.data.frame()` method is only called for "datawizard_tables" (the plural)
# form). Else, we would need to modify the class attribute here,
# e.g. class(i) <- "data.frame"
if (add_total) {
# to add the total column and row, we simply can call `format()`
out <- as.data.frame(format(i))
for (cols in 2:ncol(out)) {
# since "format()" returns a character matrix, we want to convert
# the columns to numeric. We have to exclude the first column, as the
# first column is character, due to the added "Total" value.
out[[cols]] <- as.numeric(out[[cols]])
}
# after formatting, we have a "separator" row for nicer printing.
# this should also be removed
out <- remove_empty_rows(out)
} else {
out <- as.data.frame(i)
}
rownames(out) <- NULL
out
})
# create nested data frame
result <- data.frame(
var = selected_vars,
table = I(data_frames),
stringsAsFactors = stringsAsFactors
)
# consider additional arguments
rownames(result) <- row.names
result
}
#' @export
as.data.frame.datawizard_crosstabs <- as.data.frame.datawizard_tables
#' @export
format.datawizard_table <- function(x, format = "text", big_mark = NULL, ...) {
# convert to character manually, else, for large numbers,
# format_table() returns scientific notation
x <- as.data.frame(x)
x$N <- as.character(x$N)
# format data frame
ftab <- insight::format_table(x, ...)
ftab[] <- lapply(ftab, function(i) {
i[i == ""] <- ifelse(identical(format, "text"), "<NA>", "(NA)") # nolint
i
})
ftab$N <- gsub("\\.00$", "", ftab$N)
# insert big marks?
ftab$N <- .add_commas_in_numbers(ftab$N, big_mark)
ftab
}
.add_commas_in_numbers <- function(x, big_mark = NULL) {
if (is.null(big_mark) && any(nchar(x) > 5)) {
big_mark <- ","
}
if (!is.null(big_mark)) {
x <- prettyNum(x, big.mark = big_mark)
}
x
}
#' @export
print.datawizard_table <- function(x, big_mark = NULL, ...) {
a <- attributes(x)
# "table" header with variable label/name, and type
cat(.table_header(x, "text"))
# grouped data? if yes, add information on grouping factor
if (!is.null(a$group_variable)) {
group_title <- paste0("Grouped by ", toString(lapply(colnames(a$group_variable), function(i) {
sprintf("%s (%s)", i, a$group_variable[[i]])
})))
cat(insight::print_color(group_title, "blue"))
cat("\n")
}
a$total_n <- .add_commas_in_numbers(a$total_n, big_mark)
a$valid_n <- .add_commas_in_numbers(a$valid_n, big_mark)
# summary of total and valid N (we may add mean/sd as well?)
summary_line <- sprintf(
"# total N=%s valid N=%s%s\n\n",
a$total_n,
a$valid_n,
ifelse(is.null(a$weights), "", " (weighted)")
)
cat(insight::print_color(summary_line, "blue"))
# remove information that goes into the header/footer
x$Variable <- NULL
x$Group <- NULL
# print table
cat(insight::export_table(
format(x, big_mark = big_mark, ...),
cross = "+",
missing = "<NA>",
...
))
invisible(x)
}
#' @export
print_html.datawizard_table <- function(x, big_mark = NULL, ...) {
a <- attributes(x)
# "table" header with variable label/name, and type
caption <- .table_header(x, "html")
# summary of total and valid N (we may add mean/sd as well?)
footer <- sprintf(
"total N=%i valid N=%i%s",
a$total_n,
a$valid_n,
ifelse(is.null(a$weights), "", " (weighted)")
)
# remove information that goes into the header/footer
x$Variable <- NULL
x$Group <- NULL
# print table
insight::export_table(
format(x, format = "html", big_mark = big_mark, ...),
title = caption,
footer = footer,
missing = "(NA)",
format = "html"
)
}
#' @export
print_md.datawizard_table <- function(x, big_mark = NULL, ...) {
a <- attributes(x)
# "table" header with variable label/name, and type
caption <- .table_header(x, "markdown")
# summary of total and valid N (we may add mean/sd as well?)
footer <- sprintf(
"total N=%i valid N=%i%s\n\n",
a$total_n,
a$valid_n,
ifelse(is.null(a$weights), "", " (weighted)")
)
# remove information that goes into the header/footer
x$Variable <- NULL
x$Group <- NULL
# print table
insight::export_table(
format(x, format = "markdown", big_mark = big_mark, ...),
title = caption,
footer = footer,
missing = "(NA)",
format = "markdown"
)
}
#' @export
print.datawizard_tables <- function(x, big_mark = NULL, ...) {
# check if we have weights
is_weighted <- isTRUE(attributes(x)$is_weighted)
a <- attributes(x)
if (!isTRUE(a$collapse) || length(x) == 1) {
for (i in seq_along(x)) {
print(x[[i]], big_mark = big_mark, ...)
if (i < length(x)) cat("\n")
}
} else {
x <- lapply(x, function(i) {
i_attr <- attributes(i)
i <- format(i, format = "text", big_mark = big_mark, ...)
i$Variable[i_attr$duplicate_varnames] <- ""
if (!is.null(i$Group)) i$Group[i_attr$duplicate_varnames] <- ""
i[nrow(i) + 1, ] <- ""
i
})
out <- do.call(rbind, x)
if (is_weighted) {
cat(insight::print_color("# Frequency Table (weighted)\n\n", "blue"))
} else {
cat(insight::print_color("# Frequency Table\n\n", "blue"))
}
# print table
cat(insight::export_table(
out,
missing = "<NA>",
cross = "+",
empty_line = "-",
...
))
}
}
#' @export
print_html.datawizard_tables <- function(x, big_mark = NULL, ...) {
# check if we have weights
is_weighted <- isTRUE(attributes(x)$is_weighted)
if (length(x) == 1) {
print_html(x[[1]], big_mark = big_mark, ...)
} else {
x <- lapply(x, function(i) {
i_attr <- attributes(i)
i <- format(i, format = "html", big_mark = big_mark, ...)
i$Variable[i_attr$duplicate_varnames] <- ""
i
})
out <- do.call(rbind, x)
# print table
insight::export_table(
out,
missing = "<NA>",
caption = ifelse(is_weighted, "Frequency Table (weighted)", "Frequency Table"),
format = "html",
group_by = "Group"
)
}
}
#' @export
print_md.datawizard_tables <- function(x, big_mark = NULL, ...) {
# check if we have weights
is_weighted <- isTRUE(attributes(x)$is_weighted)
if (length(x) == 1) {
print_md(x[[1]], big_mark = big_mark, ...)
} else {
x <- lapply(x, function(i) {
i_attr <- attributes(i)
i <- format(i, format = "markdown", big_mark = big_mark, ...)
i$Variable[i_attr$duplicate_varnames] <- ""
if (!is.null(i$Group)) i$Group[i_attr$duplicate_varnames] <- ""
i[nrow(i) + 1, ] <- ""
i
})
out <- do.call(rbind, x)
# print table
insight::export_table(
out,
missing = "(NA)",
empty_line = "-",
format = "markdown",
title = ifelse(is_weighted, "Frequency Table (weighted)", "Frequency Table")
)
}
}
# tools --------------------
.table_header <- function(x, format = "text") {
a <- attributes(x)
# assemble name, based on what information is available
name <- NULL
# fix object name
if (identical(a$object, "x[[i]]")) {
a$object <- NULL
}
if (!is.null(a$label)) {
name <- a$label
if (!is.null(a$varname)) {
name <- paste0(name, " (", a$varname, ")")
} else if (!is.null(a$object)) {
name <- paste0(name, " (", a$object, ")")
}
} else if (!is.null(a$varname)) {
name <- a$varname
if (!is.null(a$object)) {
name <- paste0(name, " (", a$object, ")")
}
}
if (is.null(name) && !is.null(a$object)) {
name <- a$object
}
# "table" header with variable label/name, and type
if (identical(format, "text")) {
out <- paste(
insight::color_text(name, "red"),
insight::color_text(sprintf("<%s>\n", a$type), "blue")
)
} else {
out <- paste0(name, " (", a$type, ")")
}
out
}
.variable_type <- function(x) {
if (is.ordered(x)) {
vt <- "ord"
} else if (is.factor(x)) {
vt <- "fct"
} else if (class(x)[1] == "Date") {
vt <- "date"
} else {
vt <- switch(typeof(x),
logical = "lgl",
integer = "int",
double = "dbl",
character = "chr",
complex = "cpl",
closure = "fn",
environment = "env",
typeof(x)
)
}
switch(vt,
ord = "ordinal",
fct = "categorical",
dbl = "numeric",
int = "integer",
chr = "character",
lbl = "labelled",
cpl = "complex",
lgl = "logical",
vt
)
}
|