1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
#' @title Reshape (pivot) data from wide to long
#' @name data_to_long
#'
#' @description
#' This function "lengthens" data, increasing the number of rows and decreasing
#' the number of columns. This is a dependency-free base-R equivalent of
#' `tidyr::pivot_longer()`.
#'
#' @param data A data frame to convert to long format, so that it has more
#' rows and fewer columns after the operation.
#' @param names_to The name of the new column (variable) that will contain the
#' _names_ from columns in `select` as values, to identify the source of the
#' values. `names_to` can be a character vector with more than one column name,
#' in which case `names_sep` or `names_pattern` must be provided in order to
#' identify which parts of the column names go into newly created columns.
#' See also 'Examples'.
#' @param names_prefix A regular expression used to remove matching text from
#' the start of each variable name.
#' @param names_sep,names_pattern If `names_to` contains multiple values, this
#' argument controls how the column name is broken up. `names_pattern` takes a
#' regular expression containing matching groups, i.e. "()".
#' @param values_to The name of the new column that will contain the _values_ of
#' the columns in `select`.
#' @param values_drop_na If `TRUE`, will drop rows that contain only `NA` in the
#' `values_to` column. This effectively converts explicit missing values to
#' implicit missing values, and should generally be used only when missing values
#' in data were created by its structure.
#' @param rows_to The name of the column that will contain the row names or row
#' numbers from the original data. If `NULL`, will be removed.
#' @param ... Currently not used.
#' @inheritParams extract_column_names
#' @param cols Identical to `select`. This argument is here to ensure compatibility
#' with `tidyr::pivot_longer()`. If both `select` and `cols` are provided, `cols`
#' is used.
#'
#' @inherit data_rename seealso
#'
#' @details
#' Reshaping data into long format usually means that the input data frame is
#' in _wide_ format, where multiple measurements taken on the same subject are
#' stored in multiple columns (variables). The long format stores the same
#' information in a single column, with each measurement per subject stored in
#' a separate row. The values of all variables that are not in `select` will
#' be repeated.
#'
#' The necessary information for `data_to_long()` is:
#'
#' - The columns that contain the repeated measurements (`select`).
#' - The name of the newly created column that will contain the names of the
#' columns in `select` (`names_to`), to identify the source of the values.
#' `names_to` can also be a character vector with more than one column name,
#' in which case `names_sep` or `names_pattern` must be provided to specify
#' which parts of the column names go into the newly created columns.
#' - The name of the newly created column that contains the values of the
#' columns in `select` (`values_to`).
#'
#' In other words: repeated measurements that are spread across several columns
#' will be gathered into a single column (`values_to`), with the original column
#' names, that identify the source of the gathered values, stored in one or more
#' new columns (`names_to`).
#'
#' @return If a tibble was provided as input, `reshape_longer()` also returns a
#' tibble. Otherwise, it returns a data frame.
#'
#' @examplesIf all(insight::check_if_installed(c("psych", "tidyr"), quietly = TRUE))
#' wide_data <- setNames(
#' data.frame(replicate(2, rnorm(8))),
#' c("Time1", "Time2")
#' )
#' wide_data$ID <- 1:8
#' wide_data
#'
#' # Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:3))
#' # probably doesn't make much sense to mix "time" and "id"
#' data_to_long(wide_data)
#'
#' # Customizing the names
#' data_to_long(
#' wide_data,
#' select = c("Time1", "Time2"),
#' names_to = "Timepoint",
#' values_to = "Score"
#' )
#'
#' # Reshape multiple columns into long format.
#' mydat <- data.frame(
#' age = c(20, 30, 40),
#' sex = c("Female", "Male", "Male"),
#' score_t1 = c(30, 35, 32),
#' score_t2 = c(33, 34, 37),
#' score_t3 = c(36, 35, 38),
#' speed_t1 = c(2, 3, 1),
#' speed_t2 = c(3, 4, 5),
#' speed_t3 = c(1, 8, 6)
#' )
#' # The column names are split into two columns: "type" and "time". The
#' # pattern for splitting column names is provided in `names_pattern`. Values
#' # of all "score_*" and "speed_*" columns are gathered into a single column
#' # named "count".
#' data_to_long(
#' mydat,
#' select = 3:8,
#' names_to = c("type", "time"),
#' names_pattern = "(score|speed)_t(\\d+)",
#' values_to = "count"
#' )
#'
#' # Full example
#' # ------------------
#' data <- psych::bfi # Wide format with one row per participant's personality test
#'
#' # Pivot long format
#' very_long_data <- data_to_long(data,
#' select = regex("\\d"), # Select all columns that contain a digit
#' names_to = "Item",
#' values_to = "Score",
#' rows_to = "Participant"
#' )
#' head(very_long_data)
#'
#' even_longer_data <- data_to_long(
#' tidyr::who,
#' select = new_sp_m014:newrel_f65,
#' names_to = c("diagnosis", "gender", "age"),
#' names_pattern = "new_?(.*)_(.)(.*)",
#' values_to = "count"
#' )
#' head(even_longer_data)
#' @export
data_to_long <- function(data,
select = "all",
names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
values_to = "value",
values_drop_na = FALSE,
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols) { # nolint
original_data <- data
# Prefer "cols" over "select" for compat with tidyr::pivot_longer
# nolint start
if (!missing(cols)) {
select <- substitute(cols)
cols <- .select_nse(
select,
data,
exclude = NULL,
ignore_case = ignore_case,
regex = regex,
verbose = FALSE
)
} else {
if (!missing(select) || !is.null(select)) {
cols <- .select_nse(
select,
data,
exclude = NULL,
ignore_case = ignore_case,
regex = regex,
verbose = FALSE
)
} else {
insight::format_error(
"You need to specify columns to pivot, either with `select` or `cols`."
)
}
}
# nolint end
# nothing to select?
if (length(cols) == 0L) {
insight::format_error("No columns found for reshaping data.")
}
if (length(names_to) > 1L && is.null(names_sep) && is.null(names_pattern)) {
insight::format_error(
"If you supply multiple names in `names_to`, you must also supply one of `names_sep` or `names_pattern`."
)
}
if (length(names_to) == 1L) {
if (!is.null(names_sep)) {
insight::format_error(
"You can't use `names_sep` when `names_to` is of length 1."
)
}
if (!is.null(names_pattern)) {
insight::format_error(
"You can't use `names_pattern` when `names_to` is of length 1."
)
}
}
# save custom attributes
custom_attr <- attributes(data)
# Remove tidyverse attributes, will add them back at the end
if (inherits(data, "tbl_df")) {
tbl_input <- TRUE
data <- as.data.frame(data, stringsAsFactors = FALSE)
} else {
tbl_input <- FALSE
}
if (any(names_to %in% setdiff(names(data), cols))) {
insight::format_error(
"Some values of the columns specified in `names_to` are already present as column names.",
paste0(
"Either use another value in `names_to` or rename the following columns: ",
text_concatenate(names_to[which(names_to %in% setdiff(names(data), cols))])
)
)
}
not_selected <- setdiff(names(data), cols)
# create a temp id so that we know how to rearrange the rows once the data is
# stacked
not_stacked <- data[, not_selected, drop = FALSE]
not_stacked[["_Rows"]] <- coerce_to_numeric(row.names(data))
# stack the selected columns
stacked_data <- .stack(data[, cols, drop = FALSE])[, 2:1]
# reorder the rows to have a repeated sequence when all vars are selected to
# pivot
#
# See with following example:
# wide_data <- data.frame(replicate(5, rnorm(10)))
# data_to_long(wide_data)
needs_to_rearrange <- length(not_selected) == 0L && is.null(rows_to)
if (isTRUE(needs_to_rearrange)) {
# https://stackoverflow.com/questions/73984957/efficient-way-to-reorder-rows-to-have-a-repeated-sequence
stacked_data <- stacked_data[
matrix(
seq_len(nrow(stacked_data)),
nrow = length(unique(stacked_data$ind)),
byrow = TRUE
),
]
row.names(stacked_data) <- NULL
}
stacked_data <- data_rename(stacked_data, "values", values_to)
# split columns if several names in names_to or names_pattern is specified
if (length(names_to) > 1L) {
if (is.null(names_pattern)) {
# faster than strsplit
tmp <- utils::read.csv(
text = stacked_data$ind,
sep = names_sep,
stringsAsFactors = FALSE,
header = FALSE
)
names(tmp) <- paste0("V", seq_len(ncol(tmp)))
tmp[tmp == ""] <- NA # nolint
stacked_data$ind <- NULL
stacked_data <- cbind(tmp, stacked_data)
} else {
tmp <- regmatches(
unique(stacked_data$ind),
regexec(names_pattern, unique(stacked_data$ind))
)
tmp <- as.data.frame(do.call(rbind, tmp), stringsAsFactors = FALSE)
names(tmp) <- c("ind", names_to)
# cbind + match is faster than merge
# cbind doesn't remove identical columns so we need to manually remove "ind"
# which is in both datasets
stacked_data <- cbind(stacked_data, tmp[match(stacked_data[["ind"]], tmp[["ind"]]), -1])
stacked_data$ind <- NULL
}
}
stacked_data <- data_relocate(stacked_data, select = values_to, after = -1)
# if columns in data frame have attributes (e.g. labelled data), `cbind()`
# won't work, so we need to remove them. We'll set them back later
not_stacked[] <- lapply(not_stacked, function(i) {
# we can't remove *all* attributes, this will convert factors into integers
attr(i, "label") <- NULL
attr(i, "labels") <- NULL
attr(i, "format.spss") <- NULL
class(i) <- setdiff(class(i), c("haven_labelled", "vctrs_vctr"))
i
})
# reunite unselected data with stacked data
out <- cbind(
not_stacked, stats::setNames(stacked_data, c(names_to, values_to)),
row.names = NULL
)
if (!is.null(names_prefix)) {
if (length(names_to) > 1L) {
insight::format_error(
"`names_prefix` only works when `names_to` is of length 1."
)
}
out[[names_to]] <- gsub(paste0("^", names_prefix), "", out[[names_to]])
}
# rearrange the rows with the temp id
if (length(not_selected) > 0L) {
out <- data_arrange(out, "_Rows")
}
# Remove or rename the row index
if (is.null(rows_to)) {
out[["_Rows"]] <- NULL
} else {
out <- data_rename(out, "_Rows", rows_to)
}
if (values_drop_na) {
out <- out[!is.na(out[, values_to]), ]
}
# add back attributes
out <- .replace_attrs(out, custom_attr)
# add back tidyverse attributes
if (isTRUE(tbl_input)) {
class(out) <- c("tbl_df", "tbl", "data.frame")
}
# reset row names
if (!insight::object_has_rownames(data)) {
row.names(out) <- NULL
}
# set back labels
shared_columns <- intersect(colnames(out), colnames(original_data))
for (i in shared_columns) {
out[[i]] <- .set_back_labels(out[[i]], original_data[[i]], include_values = TRUE)
}
out
}
#' Code adapted from utils::stack (but largely modified)
#'
#' @noRd
.stack <- function(x) {
ind <- rep(names(x), times = lengths(x))
# use do.call("c", ...) instead of unlist to preserve the date format (but a
# bit slower)
# can't use do.call("c", ...) all the time because its behavior changed with
# factors in 4.1.0
values_are_dates <- all(
vapply(x, .is_date, FUN.VALUE = logical(1L))
)
if (values_are_dates) {
data.frame(values = do.call("c", unname(x)), ind, stringsAsFactors = FALSE)
} else {
data.frame(values = unlist(x, use.names = FALSE), ind, stringsAsFactors = FALSE)
}
}
#' @rdname data_to_long
#' @export
reshape_longer <- data_to_long
|