File: data_to_wide.R

package info (click to toggle)
r-cran-datawizard 1.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,300 kB
  • sloc: sh: 13; makefile: 2
file content (419 lines) | stat: -rw-r--r-- 14,517 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#' Reshape (pivot) data from long to wide
#'
#' This function "widens" data, increasing the number of columns and decreasing
#' the number of rows. This is a dependency-free base-R equivalent of
#' `tidyr::pivot_wider()`.
#'
#' @param data A data frame to convert to wide format, so that it has more
#' columns and fewer rows post-widening than pre-widening.
#' @param id_cols The name of the column that identifies the rows in the data
#' by which observations are grouped and the gathered data is spread into new
#' columns. Usually, this is a variable containing an ID for observations that
#' have been repeatedly measured. If `NULL`, it will use all remaining columns
#' that are not in `names_from` or `values_from` as ID columns. `id_cols` can
#' also be a character vector with more than one name of identifier columns. See
#' also 'Details' and 'Examples'.
#' @param names_from The name of the column in the original data whose values
#' will be used for naming the new columns created in the widened data. Each
#' unique value in this column will become the name of one of these new columns.
#' In case `names_prefix` is provided, column names will be concatenated with
#' the string given in `names_prefix`.
#' @param names_prefix String added to the start of every variable name. This is
#'  particularly useful if `names_from` is a numeric vector and you want to create
#'  syntactic variable names.
#' @param names_sep If `names_from` or `values_from` contains multiple variables,
#' this will be used to join their values together into a single string to use
#' as a column name.
#' @param names_glue Instead of `names_sep` and `names_prefix`, you can supply a
#' [glue specification](https://glue.tidyverse.org/index.html) that uses the
#' `names_from` columns to create custom column names. Note that the only
#' delimiters supported by `names_glue` are curly brackets, `{` and `}`.
#' @param values_from The name of the columns in the original data that contains
#' the values used to fill the new columns created in the widened data.
#' @param values_fill Optionally, a (scalar) value that will be used to replace
#' missing values in the new columns created.
#' @param verbose Toggle warnings.
#' @param ... Not used for now.
#'
#' @return If a tibble was provided as input, `data_to_wide()` also returns a
#' tibble. Otherwise, it returns a data frame.
#'
#' @details
#' Reshaping data into wide format usually means that the input data frame is
#' in _long_ format, where multiple measurements taken on the same subject are
#' stored in multiple rows. The wide format stores the same information in a
#' single row, with each measurement stored in a separate column. Thus, the
#' necessary information for `data_to_wide()` is:
#'
#' - The name of the column(s) that identify the groups or repeated measurements
#'   (`id_cols`).
#' - The name of the column whose _values_ will become the new column names
#'   (`names_from`). Since these values may not necessarily reflect appropriate
#'   column names, you can use `names_prefix` to add a prefix to each newly
#'   created column name.
#' - The name of the column that contains the values (`values_from`) for the
#'   new columns that are created by `names_from`.
#'
#' In other words: repeated measurements, as indicated by `id_cols`, that are
#' saved into the column `values_from` will be spread into new columns, which
#' will be named after the values in `names_from`. See also 'Examples'.
#'
#' @examplesIf requireNamespace("lme4", quietly = TRUE)
#' data_long <- read.table(header = TRUE, text = "
#'  subject sex condition measurement
#'        1   M   control         7.9
#'        1   M     cond1        12.3
#'        1   M     cond2        10.7
#'        2   F   control         6.3
#'        2   F     cond1        10.6
#'        2   F     cond2        11.1
#'        3   F   control         9.5
#'        3   F     cond1        13.1
#'        3   F     cond2        13.8
#'        4   M   control        11.5
#'        4   M     cond1        13.4
#'        4   M     cond2        12.9")
#'
#' # converting long data into wide format
#' data_to_wide(
#'   data_long,
#'   id_cols = "subject",
#'   names_from = "condition",
#'   values_from = "measurement"
#' )
#'
#' # converting long data into wide format with custom column names
#' data_to_wide(
#'   data_long,
#'   id_cols = "subject",
#'   names_from = "condition",
#'   values_from = "measurement",
#'   names_prefix = "Var.",
#'   names_sep = "."
#' )
#'
#' # converting long data into wide format, combining multiple columns
#' production <- expand.grid(
#'   product = c("A", "B"),
#'   country = c("AI", "EI"),
#'   year = 2000:2014
#' )
#' production <- data_filter(production, (product == "A" & country == "AI") | product == "B")
#' production$production <- rnorm(nrow(production))
#'
#' data_to_wide(
#'   production,
#'   names_from = c("product", "country"),
#'   values_from = "production",
#'   names_glue = "prod_{product}_{country}"
#' )
#'
#' # using the "sleepstudy" dataset
#' data(sleepstudy, package = "lme4")
#'
#' # the sleepstudy data contains repeated measurements of average reaction
#' # times for each subjects over multiple days, in a sleep deprivation study.
#' # It is in long-format, i.e. each row corresponds to a single measurement.
#' # The variable "Days" contains the timepoint of the measurement, and
#' # "Reaction" contains the measurement itself. Converting this data to wide
#' # format will create a new column for each day, with the reaction time as the
#' # value.
#' head(sleepstudy)
#'
#' data_to_wide(
#'   sleepstudy,
#'   id_cols = "Subject",
#'   names_from = "Days",
#'   values_from = "Reaction"
#' )
#'
#' # clearer column names
#' data_to_wide(
#'   sleepstudy,
#'   id_cols = "Subject",
#'   names_from = "Days",
#'   values_from = "Reaction",
#'   names_prefix = "Reaction_Day_"
#' )
#'
#' # For unequal group sizes, missing information is filled with NA
#' d <- subset(sleepstudy, Days %in% c(0, 1, 2, 3, 4))[c(1:9, 11:13, 16:17, 21), ]
#'
#' # long format, different number of "Subjects"
#' d
#'
#' data_to_wide(
#'   d,
#'   id_cols = "Subject",
#'   names_from = "Days",
#'   values_from = "Reaction",
#'   names_prefix = "Reaction_Day_"
#' )
#'
#' # filling missing values with 0
#' data_to_wide(
#'   d,
#'   id_cols = "Subject",
#'   names_from = "Days",
#'   values_from = "Reaction",
#'   names_prefix = "Reaction_Day_",
#'   values_fill = 0
#' )
#' @inherit data_rename seealso
#' @export
data_to_wide <- function(data,
                         id_cols = NULL,
                         values_from = "Value",
                         names_from = "Name",
                         names_sep = "_",
                         names_prefix = "",
                         names_glue = NULL,
                         values_fill = NULL,
                         verbose = TRUE,
                         ...) {
  if (is.null(id_cols)) {
    id_cols <- setdiff(names(data), c(names_from, values_from))
  }

  # save custom attributes
  custom_attr <- attributes(data)

  current_colnames <- names(data)

  # Preserve attributes
  if (inherits(data, "tbl_df")) {
    tbl_input <- TRUE
    data <- as.data.frame(data, stringsAsFactors = FALSE)
  } else {
    tbl_input <- FALSE
  }

  variable_attr <- lapply(data, attributes)

  not_unstacked <- data[, id_cols, drop = FALSE]
  not_unstacked <- unique(not_unstacked)

  # unstack doesn't create NAs for combinations that don't exist (contrary to
  # reshape), so we need to complete the dataset before unstacking.

  new_data <- data

  # create an id with all variables that are not in names_from or values_from
  # so that we can create missing combinations between this id and names_from
  if (length(id_cols) > 1L) {
    new_data$temporary_id <- do.call(paste, c(new_data[, id_cols, drop = FALSE], sep = "_"))
  } else if (length(id_cols) == 1L) {
    new_data$temporary_id <- new_data[[id_cols]]
  } else {
    new_data$temporary_id <- seq_len(nrow(new_data))
  }

  # check that all_groups have all possible values for names_from
  # If not, need to complete the dataset with NA for values_from where names_from
  # didn't exist
  n_rows_per_group <- table(new_data$temporary_id)
  n_values_per_group <- insight::n_unique(n_rows_per_group)

  not_all_cols_are_selected <- length(id_cols) > 0L

  incomplete_groups <-
    (n_values_per_group > 1L &&
      !all(unique(n_rows_per_group) %in% insight::n_unique(new_data[, names_from]))
    ) ||
      (n_values_per_group == 1L &&
        unique(n_rows_per_group) < length(unique(new_data[, names_from]))
      )

  # create missing combinations

  if (not_all_cols_are_selected && incomplete_groups) {
    expanded <- expand.grid(unique(new_data[["temporary_id"]]), unique(new_data[[names_from]]))
    names(expanded) <- c("temporary_id", names_from)
    new_data <- data_merge(new_data, expanded,
      join = "full", by = c("temporary_id", names_from),
      sort = FALSE
    )

    # need to make a second temporary id to keep arrange values *without*
    # rearranging the whole dataset
    # Ex:
    # "B"   1
    # "A"   3
    # "A"   NA
    # "B"   NA
    #
    # must be rearranged as "B" "B" "A" "A" and not "A" "A" "B" "B"
    lookup <- data.frame(
      temporary_id = unique(
        new_data[!is.na(new_data[[values_from]]), "temporary_id"]
      )
    )
    lookup$temporary_id_2 <- seq_len(nrow(lookup))
    new_data <- data_merge(
      new_data, lookup,
      by = "temporary_id", join = "left"
    )

    # creation of missing combinations was done with a temporary id, so need
    # to fill columns that are not selected in names_from or values_from
    new_data[, id_cols] <- lapply(id_cols, function(x) {
      data <- data_arrange(new_data, c("temporary_id_2", x))
      ind <- which(!is.na(data[[x]]))
      rep_times <- diff(c(ind, length(data[[x]]) + 1))
      rep(data[[x]][ind], times = rep_times)
    })

    new_data <- data_arrange(new_data, "temporary_id_2")
  }

  # don't need temporary ids anymore
  new_data$temporary_id <- NULL
  new_data$temporary_id_2 <- NULL

  # Fill missing values (before converting to wide)
  if (!is.null(values_fill)) {
    if (length(values_fill) == 1L) {
      if (is.numeric(new_data[[values_from]])) {
        if (is.numeric(values_fill)) {
          new_data <- convert_na_to(new_data, replace_num = values_fill)
        } else {
          insight::format_error(paste0("`values_fill` must be of type numeric."))
        }
      } else if (is.character(new_data[[values_from]])) {
        if (is.character(values_fill)) {
          new_data <- convert_na_to(new_data, replace_char = values_fill)
        } else {
          insight::format_error(paste0("`values_fill` must be of type character."))
        }
      } else if (is.factor(new_data[[values_from]])) {
        if (is.factor(values_fill)) {
          new_data <- convert_na_to(new_data, replace_fac = values_fill)
        } else {
          insight::format_error(paste0("`values_fill` must be of type factor."))
        }
      }
    } else if (verbose) {
      insight::format_error("`values_fill` must be of length 1.")
    }
  }

  # convert to wide format (returns the data and the order in which columns
  # should be ordered)
  unstacked <- .unstack(
    new_data, names_from, values_from,
    names_sep, names_prefix, names_glue
  )

  out <- unstacked$out

  if (length(values_from) > 1L) {
    unstacked$col_order <- unique(data[, names_from])
    unstacked$col_order <- sort(
      as.vector(
        outer(values_from, unstacked$col_order, paste, sep = names_sep)
      )
    )
  }

  # stop if some column names would be duplicated (follow tidyr workflow)
  if (any(unstacked$col_order %in% current_colnames)) {
    insight::format_error(
      "Some values of the columns specified in `names_from` are already present as column names.",
      paste0(
        "Either use `names_prefix` or rename the following columns: ",
        text_concatenate(current_colnames[which(current_colnames %in% unstacked$col_order)])
      )
    )
  }

  # reorder columns
  out <- out[, unstacked$col_order]

  # need to add the wide data to the original data
  if (!insight::is_empty_object(not_unstacked)) {
    out <- cbind(not_unstacked, out)
  }
  row.names(out) <- NULL

  out <- remove_empty_columns(out)

  # add back attributes where possible
  for (i in colnames(out)) {
    attributes(out[[i]]) <- variable_attr[[i]]
  }

  # convert back to date if original values were dates
  values_are_dates <- all(
    vapply(data[, values_from, drop = FALSE], .is_date, FUN.VALUE = logical(1L))
  )
  if (values_are_dates) {
    for (i in unstacked$col_order) {
      out[[i]] <- as.Date.numeric(out[[i]], origin = "1970-01-01")
    }
  }

  # add back attributes
  out <- .replace_attrs(out, custom_attr)

  if (isTRUE(tbl_input)) {
    class(out) <- c("tbl_df", "tbl", "data.frame")
  }

  out
}


#' Adapted from `utils::unstack` (but largely modified)
#'
#' @noRd

.unstack <- function(x, names_from, values_from, names_sep, names_prefix, names_glue = NULL) {
  # get values from names_from (future colnames)

  if (is.null(names_glue)) {
    x$future_colnames <- do.call(paste, c(x[, names_from, drop = FALSE], sep = names_sep))
  } else {
    vars <- regmatches(names_glue, gregexpr("\\{\\K[^{}]+(?=\\})", names_glue, perl = TRUE))[[1]]
    tmp_data <- x[, vars]
    x$future_colnames <- .gluestick(names_glue, src = tmp_data)
  }

  x$future_colnames <- paste0(names_prefix, x$future_colnames)

  # expand the values for each variable in "values_from"
  res <- list()
  for (i in seq_along(values_from)) {
    res[[i]] <- tapply(x[[values_from[i]]], x$future_colnames, as.vector)
    if (length(values_from) > 1L) {
      names(res[[i]]) <- paste0(values_from[i], names_sep, names(res[[i]]))
    }
  }

  # if there's a single variable in "values_from" and this variable only has
  # one value, need to make it a dataframe

  if (length(res) == 1L && !is.list(res[[1]])) {
    res <- data.frame(
      matrix(
        res[[1]],
        nrow = 1, dimnames = list(NULL, names(res[[1]]))
      ),
      stringsAsFactors = FALSE,
      check.names = FALSE
    )
  } else {
    res <- unlist(res, recursive = FALSE)
  }

  # return the wide data and the order in which the new columns should be

  list(
    out = data.frame(res, stringsAsFactors = FALSE, check.names = FALSE),
    col_order = unique(x$future_colnames)
  )
}


#' @rdname data_to_wide
#' @export
reshape_wider <- data_to_wide